1
|
Harland N, Knoll J, Amend B, Abruzzese T, Abele H, Jakubowski P, Stenzl A, Aicher WK. Xenogenic Application of Human Placenta-Derived Mesenchymal Stromal Cells in a Porcine Large Animal Model. Cell Transplant 2024; 33:9636897241226737. [PMID: 38323325 PMCID: PMC10851762 DOI: 10.1177/09636897241226737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
In animal models, cell therapies for different diseases or injuries have been very successful. Preclinical studies with cells aiming at a stroke, heart attack, and other emergency situations were promising but sometimes failed translation in clinical situations. We, therefore, investigated if human placenta-derived mesenchymal stromal cells can be injected in pigs without provoking rejection to serve as a xenogenic transplantation model to bridge preclinical animal studies to more promising future preclinical studies. Male human placenta-derived mesenchymal stromal cells were isolated, expanded, and characterized by flow cytometry, in vitro differentiation, and quantitative reverse-transcription polymerase chain reaction to prove their nature. Such cells were injected into the sphincter muscle of the urethrae of female pigs under visual control by cystoscopy employing a Williams needle. The animals were observed over 7 days of follow-up. Reactions of the host to the xenogeneic cells were explored by monitoring body temperature, and inflammatory markers including IL-1ß, CRP, and haptoglobin in blood. After sacrifice on day 7, infiltration of inflammatory cells in the tissue targeted was investigated by histology and immunofluorescence. DNA of injected human cells was detected by PCR. Upon injection in vascularized porcine tissue, human placenta-derived mesenchymal stromal cells were tolerated, and systemic inflammatory parameters were not elevated. DNA of injected cells was detected in situ 7 days after injection, and moderate local infiltration of inflammatory cells was observed. The therapeutic potential of human placenta-derived mesenchymal stromal cells can be explored in porcine large animal models of injury or disease. This seems a promising strategy to explore technologies for cell injections in infarcted hearts or small organs and tissues in therapeutically relevant amounts requiring large animal models to yield meaningful outcomes.
Collapse
Affiliation(s)
- Niklas Harland
- Department of Urology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Jasmin Knoll
- Center for Medical Research, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Tanja Abruzzese
- Center for Medical Research, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Harald Abele
- Department of Gynecology and Obstetrics, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Peter Jakubowski
- Department of Gynecology and Obstetrics, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Arnulf Stenzl
- Center for Medical Research, University Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
2
|
Amend B, Buttgereit L, Abruzzese T, Harland N, Abele H, Jakubowski P, Stenzl A, Gorodetsky R, Aicher WK. Regulation of Immune Checkpoint Antigen CD276 (B7-H3) on Human Placenta-Derived Mesenchymal Stromal Cells in GMP-Compliant Cell Culture Media. Int J Mol Sci 2023; 24:16422. [PMID: 38003612 PMCID: PMC10671289 DOI: 10.3390/ijms242216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.
Collapse
Affiliation(s)
- Bastian Amend
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Lea Buttgereit
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Tanja Abruzzese
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Harald Abele
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Peter Jakubowski
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Centre, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|