1
|
Tilahun M, Sharew B, Shibabaw A. Antimicrobial resistance profile and associated factors of hospital-acquired gram-negative bacterial pathogens among hospitalized patients in northeast Ethiopia. BMC Microbiol 2024; 24:339. [PMID: 39261762 PMCID: PMC11389124 DOI: 10.1186/s12866-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Antimicrobial resistance is a major global public health issue. Infections caused by resistant species are associated with higher mortality rates, longer hospital stays, medication failure, and rising medical costs. The World Health Organisation has declared multidrug resistance-associated infections as an epidemic of public health concern. OBJECTIVE This study aimed to evaluate the antimicrobial resistance profile and associated factors of hospital-acquired Gram-negative bacterial pathogens among hospitalized patients in Northeast Ethiopia. MATERIALS AND METHODS A health facility-based cross-sectional study was conducted among hospitalized patients from March 2021 to February 2022. About 810 clinical specimens were collected, transported, and processed from admitted patients following the standard bacteriological procedures. The clinical samples were inoculated onto blood agar, MacConkey agar, and chocolate agar. Furthermore, the species identification was done using gram reactions, colony morphology, and color and biochemical tests. Antimicrobial susceptibility tests, extended-spectrum beta-lactamase, and carbapenemase production were performed as per the clinical laboratory standard institute guidelines. For analysis, the information was entered into Epi-data and exported to SPSS. A P value of < 0.05 with a 95% confidence interval was considered as a statistically significant association. RESULTS Out of 810 clinical specimens, 285/810 (35.2%) developed bacterial infections. From the isolated bacteria, E. coli was the predominant bacteria accounting for 78/285 (27.4%) followed by K. pneumoniae, 69/285(24.42%), whereas P. vulgaris accounted for the least, 7/285 (2.5%). Overall, 132/285 (46.3%) and 99/285 (34.7%) of culture-positive patients were infected by extended-spectrum beta-lactamase and carbapenemase-producing bacteria. The overall multidrug resistance rate of the isolated bacteria was 89.4%. The highest antibiotic resistance rates were detected for doxycycline (92.9%), amoxicillin-clavulanic acid (83.9%), and ampicillin (93%). The least antibiotic resistance rate was observed for meropenem at 41.1% and amikacin at 1.7%, respectively. CONCLUSIONS AND RECOMMENDATIONS In the study area, significant health concerns include a range of hospital-acquired bacterial infections associated with elevated rates of multidrug resistance, Extended-spectrum beta-lactamase (ESBL), and carbapenemase-producing bacterial pathogens. Consequently, it is recommended to conduct drug-susceptibility testing of isolates and molecular detection at a national level to optimize antibiotic usage for treating prevalent bacterial infections in this area.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, 1145, Ethiopia.
| | - Bekele Sharew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre-Tabor, Ethiopia
| | - Agumas Shibabaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, 1145, Ethiopia
| |
Collapse
|
2
|
Wolde D, Eguale T, Alemayehu H, Medhin G, Haile AF, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics (Basel) 2024; 13:93. [PMID: 38247652 PMCID: PMC10812509 DOI: 10.3390/antibiotics13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial resistance of Escherichia coli is a growing problem in both developed and developing countries. This study aimed to investigate the phenotypic antimicrobial resistance of E. coli isolates (n = 260) isolated from the stool specimen of patients attending public health facilities in Addis Ababa and Hossana. This study also aimed to characterize phenotypically confirmed extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates (n = 22) using whole-genome sequencing. Resistance to 18 different antimicrobials was assessed using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The highest resistance rate among the E. coli isolates was found for ampicillin (52.7%), followed by trimethoprim-sulfamethoxazole (29.6%). Of all isolates, 50 (19.2%) were multidrug-resistant and 22 (8.5%) were ESBL producers. ESBL genes were detected in 94.7% of the sequenced E. coli isolates, and multiple β-lactamase genes were detected in 57.9% of the isolates. The predominant ESBL gene identified was blaCTX-M-15 (78.9%). The blaTEM-1B gene was detected in combination with other ESBL genes in 57.9% of the isolates, while only one of the sequenced isolates contained the blaTEM-1B gene alone. The blaCTX-M-3 gene was detected in three isolates. The genes blaCTX-M-15 and blaTEM-1B as well as blaCTX-M-15 and blaTEM-169 were confirmed to coexist in 52.6% and 10.5% of the sequenced E. coli isolates, respectively. In addition, blaOXA-1 was identified together with blaCTX-M-15 and blaTEM-1B in one isolate, and in one isolate, blaTEM-169 together with blaCTX-M-15 and blaTEM-1B was found. The results obtained show that measures need to be taken to reduce the spread of drug resistance and ensure the long-term use of available antimicrobials.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Alelign D, Kidanewold A. Magnitude of extended-spectrum β-lactamase and carbapenemase producing Enterobacteriaceae among commonly vended street foods in Arba Minch town, southern Ethiopia. BMC Microbiol 2023; 23:393. [PMID: 38062376 PMCID: PMC10704832 DOI: 10.1186/s12866-023-03137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The rising prevalence of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae (ESβL-PE) in street foods poses a significant risk to human health due to its epidemiological significance. Thus, the aim of this study was to determine the magnitude of foodborne Enterobacteriaceae that produce carbapenemase and ESβL, as well as their patterns of antibiotic resistance, in the studied area. METHODS A community-based cross-sectional study was carried out from January 1st, 2023, to February 30th, 2023. One hundred randomly chosen street-vended food items (one hundred grams of each food item) were aseptically collected, and aliquots of 0.1 ml from the homogenized (25 g of samples into 225 ml of buffered peptone water (BPW)) were inoculated on MacConkey agar and Xylose Lysine Deoxycholate Agar (XLD). Enterobacteriaceae isolates were identified using various biochemical tests. ESβL and carbapenemase were first screened by indicator cephalosporins and carbapenem antibiotics, respectively. ESβL and carbapenemase were confirmed by a double-disc synergy test and modified carbapenem inactivation methods, respectively. Kirby-Bauer disc diffusion method was used for the antimicrobial-resistant test. RESULTS A total of 112 Enterobacteriaceae belonging to six different genera were isolated. E. coli was attributed 39 (34.8%), followed by Citrobacter spp. 22 (19.6%) and K. pneumoniae 18 (16.1%), with only 8 (7.1%) isolated Salmonella spp. About 15.2% (n = 17) and 8.9% (n = 10) of Enterobacteriaceae were phenotypically confirmed to be extended-spectrum beta-lactamase (ESβL) and carbapenemase producers, respectively. The highest percentage of ESβL-producing isolates was attributed to K. pneumoniae (n = 5), E. coli (n = 4), and Enterobacter spp. (n = 3). Proteus spp. and Salmonella spp. isolates were carbapenemase-negative. All carbapenemase-positive isolates were found to be ESβL-producers. 70.6% (12/17) of ESβL-producing Enterobacteriaceae were found to be multidrug-resistant (MDR). CONCLUSION A considerable number of multidrug-resistant ESβL and carbapenemase-producing Enterobacteriaceae were identified, suggesting that street foods may be a potential source of MDR foodborne infections. Consequently, it is important to conduct routine examinations of street food items and track trends in medication resistance.
Collapse
Affiliation(s)
- Dagninet Alelign
- Department of Medical Laboratory Sciences, Arba Minch University, Arba Minch, Ethiopia.
| | - Aschalew Kidanewold
- Department of Medical Laboratory Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
4
|
Abera D, Alemu A, Mihret A, Negash AA, Abegaz WE, Cadwell K. Colonization with extended spectrum beta-lactamase and carbapenemases producing Enterobacteriaceae among hospitalized patients at the global level: A systematic review and meta-analysis. PLoS One 2023; 18:e0293528. [PMID: 38011148 PMCID: PMC10681255 DOI: 10.1371/journal.pone.0293528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Gut commensal bacteria can mediate resistance against pathogenic bacteria. However, exposure to antibiotics and hospitalization may facilitate the emergence of multidrug resistant bacteria. We aimed to conduct a systematic review and meta-analysis to provide comprehensive evidence about colonization rate of extended spectrum beta-lactamase and carbapenemases producing Enterobacteriaceae. METHOD We used PubMed, Google Scholar and Web of Science data bases to search studies from January 1, 2016 to August10, 2022 about colonization rate of extended spectrum beta-lactamase and carbapenemase producing Enterobacteriaceae. Data were extracted from eligible studies and analyzed using Stata version 16 software. The quality of included studies was assessed using the Joanna Briggs Institute Critical Appraisal tools, and publication bias was assessed using funnel plot and eggers test. RESULTS We identified 342 studies from the comprehensive data search and data were extracted from 20 studies. The pooled estimate of extended spectrum beta-lactamase and carbapenemase producing Enterobacteriaceae were 45.6%(95%CI: 34.11-57-10) and 16.19% (95% CI: 5.46-26.91) respectively. The predominant extended spectrum beta-lactamase producers were E. coli,32.99% (95% CI: 23.28-42.69) and K. pneumoniae, 11.43% (95% CI:7.98-14.89). Prolonged hospitalization was linked to carbapenemase producing Enterobacteriaceae colonization with the odds of 14.77 (95% CI: -1.35-30.90) at admission and 45.63 (95% CI: 0.86-92.12) after ≥7 days of admission. CONCLUSION The pooled estimate of extended spectrum beta-lactamase and carbapenemase producing Enterobacteriaceae were high. This indicates the need for strong mitigation strategies to minimize the spread of multidrug-resistant bacteria at the healthcare facilities.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopoia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abel Abera Negash
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, United States of America
| |
Collapse
|
5
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
6
|
Potentially Virulent Multi-Drug Resistant Escherichia fergusonii Isolated from Inanimate Surface in a Medical University: Omphisa fuscidentalis as an Alternative for Bacterial Virulence Determination. Diagnostics (Basel) 2023; 13:diagnostics13020279. [PMID: 36673089 PMCID: PMC9858318 DOI: 10.3390/diagnostics13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023] Open
Abstract
Multi-drug resistant (MDR) bacteria are becoming a worldwide problem due to limited options for treatment. Moreover, patients infected by MDR with highly virulent accessories are worsening the symptoms, even to the point of causing death. In this study, we isolated bacteria from 14 inanimate surfaces that could potentially be reservoirs for the spread of bacterial infections in the medical university. Blood agar media was used for bacterial isolation. The bacterial colony that showed hemolytic activities on each surface was tested for antimicrobial susceptibility against eight different antibiotics. We found that MDR bacterium, namely TB1, which was isolated from a toilet bowl, was non-susceptible to ampicillin, imipenem, chloramphenicol, amoxicillin-clavulanic acid, gentamicin, and tetracycline. Another MDR bacterium isolated from the mobile phone screen of security officers, namely HSO, was resistant to chloramphenicol, gentamicin, tetracycline, and cefixime. An in vivo virulence test of bacterial isolates used Omphisa fuscidentalis larvae as an alternative to Galleria mellonella larvae for the infection model. A virulence test of TB1 in O. fuscidentalis larvae revealed 20% survival in the bacterial density of 104 and 105 CFU/larvae; and 0% survival in the bacterial density of 106 CFU/larvae at 24 h after injection. Bacterial identification was performed for TB1 as a potential virulent isolate. Bacterial identification using partial 16s rRNA gene showed that TB1 exhibited 99.84% identity to Escherichia fergusonii 2611. This study concludes that TB1 is a potentially virulent MDR E. fergusonii isolated from toilet bowls at a medical university.
Collapse
|
7
|
Rostamian M, Kadivarian S, Kooti S, Dashtbin S, Abiri R, Alvandi A. Prevalence of Extended-Spectrum Beta-Lactamase in Gram Negative Bacteria Isolated from Kermanshah Medical Centers:
A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Keikha M, Kamali H, Ghazvini K, Karbalaei M. Conceptual framework of antibiotic stewardship programs in reducing ESBL-producing Enterobacteriaceae: a systematic review and meta-analysis. J Chemother 2022; 34:483-491. [PMID: 35706130 DOI: 10.1080/1120009x.2022.2085473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today, the phenomenon of antibiotic resistance has become one of the main concerns of health system around the world. Antimicrobial stewardship programs (ASPs) are considered as the most important strategy in optimizing antibiotic consumption, which in turn reduce the emergence of multidrug/extensively drug-resistant (MDR/XDR) microorganisms, as well as reducing mortality and healthcare costs. However, the effectiveness of APSs in controlling the spread of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae has not been investigated. The pooled odds ratio for the effectiveness of ASPs in reducing ESBL-producing Enterobacteriaceae was 0.82 (95% CI: 0.70-0.98; P value: 0.03); our results showed that in group with implemented ASPs, the prevalence of infection associated with these bacteria had been reduced by 11.8%. Overall, antimicrobial stewardship strategies are significantly effective in reducing ESBL-producing Enterobacteriaceae infections. The present study concluded that a comprehensive stewardship program will certainly reduce the mortality rate, as well as hospitalization stay and treatment costs. In general, our findings strongly support the performance of ASPs in healthcare centers.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|