1
|
Tatone C, Di Emidio G, Battaglia R, Di Pietro C. Building a Human Ovarian Antioxidant ceRNA Network "OvAnOx": A Bioinformatic Perspective for Research on Redox-Related Ovarian Functions and Dysfunctions. Antioxidants (Basel) 2024; 13:1101. [PMID: 39334761 PMCID: PMC11428640 DOI: 10.3390/antiox13091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The ovary is a major determinant of female reproductive health. Ovarian functions are mainly related to the primordial follicle pool, which is gradually lost with aging. Ovarian aging and reproductive dysfunctions share oxidative stress as a common underlying mechanism. ROS signaling is essential for normal ovarian processes, yet it can contribute to various ovarian disorders when disrupted. Therefore, balance in the redox system is crucial for proper ovarian functions. In the present study, by focusing on mRNAs and ncRNAs described in the ovary and taking into account only validated ncRNA interactions, we built an ovarian antioxidant ceRNA network, named OvAnOx ceRNA, composed of 5 mRNAs (SOD1, SOD2, CAT, PRDX3, GR), 10 miRNAs and 5 lncRNAs (XIST, FGD5-AS1, MALAT1, NEAT1, SNHG1). Our bioinformatic analysis indicated that the components of OvAnOx ceRNA not only contribute to antioxidant defense but are also involved in other ovarian functions. Indeed, antioxidant enzymes encoded by mRNAs of OvAnOx ceRNA operate within a regulatory network that impacts ovarian reserve, follicular dynamics, and oocyte maturation in normal and pathological conditions. The OvAnOx ceRNA network represents a promising tool to unravel the complex dialog between redox potential and ovarian signaling pathways involved in reproductive health, aging, and diseases.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
2
|
Ali MA, Shaker OG, Gomaa Ali ES, Ezzat EM, Khalifa AA, Hassan EA, Habib MA, Ahmed HM, Dawood AF, Mohamed EA. Expression profile of serum LncRNAs MALAT-1 and CCAT-1 and their correlation with Mayo severity score in ulcerative colitis patients can diagnose and predict the prognosis of the disease. Noncoding RNA Res 2024; 9:318-329. [PMID: 38505308 PMCID: PMC10945117 DOI: 10.1016/j.ncrna.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
Background Ulcerative colitis (UC) has emerged as an accelerated-incidence chronic condition. UC has been identified as a precancerous lesion for colorectal cancer. Up-to-date genomic research revealed the value of many noncoding RNAs (ncRNAs) in UC pathogenesis, diagnosis, and prognosis. Aim The present study was aimed at measuring both MALAT-1 and CCAT-1 in the sera of UC patients as diagnostic and prognostic biomarkers and correlating them with the Mayo score which is a novel predictive indicator of malignant transformation as well as with clinicopathological characteristics of the disease. Patients and methods Sixty-six UC patients and 80 healthy individuals participated in this study, the serum fold changes of MALAT-1 and CCAT-1 were measured by using quantitative real-time PCR (qRT-PCR). Results The current study findings include overexpressed lncRNAs MALAT-1 and CCAT-1 in the sera of ulcerative colitis patients [(median (IQR) = 2.290 (0.16-9.36), mean ± SD = 3.37 ± 3.904 for MALAT-1, and median (IQR) = 7.305 (0.57-16.96), mean ± SD = 6.81 ± 4.002 for CCAT-1 than controls, ROC curve analysis reported that these genes could predict UC. Both genes were positively correlated with each other which enforces their synergistic effects. Both genes are diagnostic for UC patients.We related studied genes to the severity of the disease. In addition to a significant positive correlation between each gene with ESR and Mayo score, we further classified the patients according to severity (according to Mayo score to remission, mild, moderate, and severe groups) with the following results; lower levels of MALAT-1 and CCAT-1 were significantly associated with mild disease and increased gradually with more severe forms of the disease (p < 0.05). Linear regression analysis with Mayo Score as a dependent variable revealed that only the predictive power of CCAT-1 and ESR are significant. Moreover, ROC curve analysis when compared to that of the Mayo score revealed that CCAT-1 reached 99 % accuracy. In summary, both genes are prognostic factors for UC patients. Conclusion MALAT-1 and CCAT-1 are diagnostic and prognostic serum biomarkers of ulcerative colitis.
Collapse
Affiliation(s)
- Marwa A. Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - El Shimaa Gomaa Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Eman M. Ezzat
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abeer A. Khalifa
- Department of Physiology, Faculty of Medicine, Zagazig University, Egypt
| | - Essam A. Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa A. Habib
- Department of Physiology, Faculty of Medicine, Zagazig University, Egypt
| | - Heba Mostafa Ahmed
- Department Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Asmaa F.A. Dawood
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Alhasa, Saudi Arabia
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam Ali Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
3
|
Mazarei M, Shahabi Rabori V, Ghasemi N, Salehi M, Rayatpisheh N, Jahangiri N, Saberiyan M. LncRNA MALAT1 signaling pathway and clinical applications in overcome on cancers metastasis. Clin Exp Med 2023; 23:4457-4472. [PMID: 37695391 DOI: 10.1007/s10238-023-01179-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
In spite of its high mortality rate and difficulty in finding a cure, scientific advancements have contributed to a reduction in cancer-related fatalities. Aberrant gene expression during carcinogenesis emphasizes the importance of targeting the signaling networks that control gene expression in cancer treatment. Long noncoding RNAs (lncRNAs), which are transcribed RNA molecules that play a role in gene expression regulation, are a recent innovative therapeutic approach for diagnosing and treating malignancies. MALAT1, a well-known lncRNA, functions in gene expression, RNA processing, and epigenetic control. High expression levels of MALAT1 are associated with several human disorders, including metastasis, invasion, autophagy, and proliferation of cancer cells. MALAT1 affects various signaling pathways and microRNAs (miRNAs), and this study aims to outline its functional roles in cancer metastasis and its interactions with cellular signaling pathways. Moreover, MALAT1 and its interactions with signaling pathways can be promising target for cancer treatment.
Collapse
Affiliation(s)
- Madineh Mazarei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nazila Ghasemi
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehrnaz Salehi
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Rayatpisheh
- School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Jahangiri
- Department of Biology, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, School of Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Hu K, Wang C, Xu Y, Li F, Han X, Song C, Liang M. Interaction of lncRNA Gm2044 and EEF2 promotes estradiol synthesis in ovarian follicular granulosa cells. J Ovarian Res 2023; 16:171. [PMID: 37612724 PMCID: PMC10464411 DOI: 10.1186/s13048-023-01232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The functions and molecular mechanisms of long noncoding RNA (lncRNA) in reproduction have been widely studied at present. However, lncRNA regulating hormone synthesis in ovarian follicular granulosa cells has not been sufficiently studied. Our previous research demonstrated that lncRNA Gm2044 could promote estradiol synthesis in follicular granulosa cells. In this study, we identified 21 binding proteins of lncRNA Gm2044 in ovarian follicles using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). RNA immunoprecipitation (RNA IP) and reverse transcription PCR (RT-PCR) confirmed that lncRNA Gm2044 can interact with eukaryotic translation elongation factor 2 (EEF2) protein. Furthermore, we constructed lncRNA Gm2044 knockout mice using the CRISPR/Cas9 method. Although the follicular development and fertility of female lncRNA Gm2044 knockout mice were not affected, the serum estradiol concentration in female lncRNA Gm2044 knockout mice significantly decreased. Western blotting and ELISA revealed that lncRNA Gm2044 may promote the binding of EEF2 to Nr5a1 mRNA and then enhance the Nr5a1 mRNA translation, and the upregulated NR5A1 protein can strengthen estradiol synthesis. To determine the potential signaling pathway of lncRNA Gm2044 regulating estradiol synthesis, transcriptome sequencing was performed for ovaries of adult lncRNA Gm2044 knockout mice, which identified 565 significant up-regulated genes and 303 significant down-regulated genes, which were then analyzed with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and validated by molecular experiments. Understanding how lncRNA Gm2044/EEF2 protein regulates estradiol synthesis will help treat estrogen-related reproductive diseases.
Collapse
Affiliation(s)
- Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Chen Wang
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Yifan Xu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Fan Li
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Xuefeng Han
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
5
|
Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet 2023; 14:1056061. [PMID: 36845376 PMCID: PMC9944763 DOI: 10.3389/fgene.2023.1056061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Decreased ovarian reserve (DOR) is defined as a decrease in the quality and quantity of oocytes, which reduces ovarian endocrine function and female fertility. The impaired follicular development and accelerated follicle atresia lead to a decrease in the number of follicles, while the decline of oocyte quality is related to the disorder of DNA damage-repair, oxidative stress, and the dysfunction of mitochondria. Although the mechanism of DOR is still unclear, recent studies have found that long non-coding RNA (lncRNA) as a group of functional RNA molecules participate in the regulation of ovarian function, especially in the differentiation, proliferation and apoptosis of granulosa cells in the ovary. LncRNAs participate in the occurrence of DOR by affecting follicular development and atresia, the synthesis and secretion of ovarian hormones. This review summarizes current research on lncRNAs associated with DOR and reveals the potential underlying mechanisms. The present study suggests that lncRNAs could be considered as prognostic markers and treatment targets for DOR.
Collapse
Affiliation(s)
- Zhexi Lv
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zekai Lv
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Shaomi Zhu,
| |
Collapse
|
6
|
Zhang P, Gao J, Lin S, Lin G, Wang W, Tan C, Liu X, Li X, Zhang L. Long non‑coding RNA NEAT1 promotes mouse granulosa cell proliferation and estradiol synthesis by sponging miR‑874‑3p. Exp Ther Med 2022; 25:32. [PMID: 36569437 PMCID: PMC9764049 DOI: 10.3892/etm.2022.11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
It has been reported that long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in follicular growth and multiple ovarian diseases, but not the physiological function of NEAT1 in mouse granulosa cells (mGCs). Therefore, the aim of the present study was to investigate the biological roles and regulatory mechanisms of NEAT1 in mGCs. The biological effects of NEAT1 on mGCs proliferation, apoptosis, production of 17β-Estradiol (E2) and progesterone (P4) were investigated using MTS, flow cytometry and enzyme-linked immunosorbent assays, respectively. The association between NEAT1 and microRNA (miR)-874-3p was verified using luciferase reporter assay and RNA immunoprecipitation analysis. The results demonstrated that the knockdown of NEAT1 in mGC cells significantly promoted mGCs cell proliferation, inhibited apoptosis and increased the production of E2 and P4 in mGCs. The interference-mediated effect of NEAT1 on mGCs could be partially reversed by the downregulation of miR-874-3p. Overall, these results indicated that NEAT1 served as a competing endogenous RNA by competitively binding with miR-874-3p, thereby modulating mGCs proliferation and the production of E2 and P4 in mGCs.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China
| | - Jinliang Gao
- Department of Rheumatology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shan Lin
- Medical Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guangyu Lin
- Animal Husbandry Information Center of Jilin Province, Changchun, Jilin 130000, P.R. China
| | - Weixia Wang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China
| | - Chengcheng Tan
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China
| | - Xiaohui Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China
| | - Xintao Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China,Correspondence to: Professor Xintao Li or Professor Lichun Zhang, Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Jingyue, Changchun, Jilin 130000, P.R. China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, P.R. China,Correspondence to: Professor Xintao Li or Professor Lichun Zhang, Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Jingyue, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
7
|
Wang K, Cheng Y, Guo T, Guo X, Zhang H, Ma X, Pan Y, Kebreab E, Wang D, Lyu L. Analyzing the interactions of mRNAs, miRNAs and lncRNAs to predict ceRNA networks in bovine cystic follicular granulosa cells. Front Vet Sci 2022; 9:1028867. [PMID: 36311668 PMCID: PMC9606814 DOI: 10.3389/fvets.2022.1028867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanism of bovine follicular cysts. Ovarian cyst has always been an intractable scientific problem and has led to considerable economic losses to bovine breeding industry. However, its pathogenesis and molecular mechanisms are still not well understood. Here, this study aimed to investigate the role of non-coding RNAs (ncRNAs) and the ceRNA networks in bovine follicular cyst. Whole transcriptome sequencing of bovine follicular granulosa cells (GCs) was conducted to obtain the expression profiles of mRNAs, lncRNAs and miRNAs. The results for the identified expressions of 8,003 mRNAs, 579 lncRNAs and 205 miRNAs were often altered between cystic and normal follicular GCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs. Furthermore, the ceRNA network combining mRNAs, miRNAs, and lncRNAs using several bioinformatics methods based on co-expression analysis between the differentially expressed RNAs was conducted. Finally, the lncRNA NONBTAT027373.1-miR-664b-HSD17B7 pathway was verified by dual-luciferase reporting assay and RNA binding protein immunoprecipitation (RIP) assay. LncRNA NONBTAT027373.1 sponged miR-664b in GCs and prevented miR-664b from binding to the HSD17B7 3′-UTR. These results indicated that genes and lncRNAs related to steroid hormone synthesis and energy metabolism could play important roles in the formation of bovine cystic follicles through the ceRNA mechanism and represent candidate targets for further research. This can be used as a practical guideline for promoting healthy and highly efficient development in the bovine industry.
Collapse
Affiliation(s)
- Kai Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Ying Cheng
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Tong Guo
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Xiangqian Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Hongzhi Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyan Ma
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,Dong Wang
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China,*Correspondence: Lihua Lyu
| |
Collapse
|
8
|
Shokri F, Mozdarani H, Omrani MD. Evaluation of the Effect of Radiotherapy on CCL5/miR-214 -3p/MALAT1 Genes Expression in Blood Samples of Breast Cancer Patients. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:244-259. [PMID: 37605739 PMCID: PMC10440003 DOI: 10.22088/ijmcm.bums.11.3.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023]
Abstract
Current cancer therapies include chemotherapy, radiation therapy, immunotherapy, and surgery. Despite these treatment methods, a major point in cancer treatment is early detection. RNAs (mRNA, miRNAs, and LncRNA) can be used as markers to improve cancer diagnosis and treatment. This research examined how radiotherapy affected CCL5, miR-214, and MALAT-1 gene expression in the immune pathway in peripheral blood samples from radiation therapy-treated breast cancer patients. Before and after radiotherapy, peripheral blood was collected from 15 patients in four steps. Blood samples were collected in an outpatient facility from 20 healthy female volunteers with no history of malignant or inflammatory conditions. RNA was extracted from the blood samples and cDNA was synthesized. CCL5, miR-214, and MALAT-1 gene expression were determined by real-time polymerase chain reaction (RT-PCR). CCL5 protein levels in the serum were determined in 80 samples (60 BC and 20 healthy controls) using Quantikine Enzyme-Linked Immunosorbent Assay (ELISA) kits (R&D Systems). The data were then statistically evaluated. There was a significant difference between CCL5 levels in tumoral and adjacent normal blood samples (p < 0.05). The results also show that the level of gene expression and serum concentration of CCL5 protein in different phases of radiotherapy is significantly different. On the other hand, the expression level of the miR-214 gene was significantly decreased in patients compared to the control group, but this decrease was not significant for the MALAT-1 gene (p< 0.05). Also, after each stage of radiotherapy, the expression level of these two genes showed a decrease, but in the fourth week after radiotherapy, this decrease was significant (p< 0.05). Radiotherapy is associated with a decrease in the expression of miR-214 and MALAT-1, as a result, an increase in the expression of CCL5. An increase in the concentration of CCL5 protein is accompanied by an increase in the level of monocytes, which ultimately causes the infiltration of macrophages and can ultimately cause cancer recurrence. It is suggested that these genes can probably be used as diagnostic and therapeutic radiotherapy markers in breast cancer.
Collapse
Affiliation(s)
- Fazlollah Shokri
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Genetic Basis of Follicle Development in Dazu Black Goat by Whole-Transcriptome Sequencing. Animals (Basel) 2021; 11:ani11123536. [PMID: 34944311 PMCID: PMC8697922 DOI: 10.3390/ani11123536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The follicle development (FD) of a goat is precisely regulated by various noncoding RNAs (ncRNAs), especially by the regulatory mechanism of competing endogenous RNAs (ceRNAs). This study aimed to determine the expression patterns of messenger RNA (mRNA), long noncoding RNA, microRNA, and circular RNA during the FD of Dazhu black goats by whole-transcriptomic sequencing and analyze the regulatory mechanism of the ncRNA and ceRNA regulatory network. The results may lay a foundation for further research on FD and improving the reproductive performance of goats. Abstract The follicle development (FD) is an important factor determining litter size in animals. Recent studies have found that noncoding RNAs (ncRNAs) play an important role in FD. In particular, the role of the regulatory mechanism of competing endogenous RNAs (ceRNAs) that drive FD has attracted increasing attention. Therefore, this study explored the genetic basis of goat FD by obtaining the complete follicular transcriptome of Dazu black goats at different developmental stages. Results revealed that 128 messenger RNAs (mRNAs), 4 long noncoding RNAs (lncRNAs), 49 microRNAs (miRNAs), and 290 circular RNAs (circRNAs) were significantly differentially expressed (DE) between large and small follicles. Moreover, DEmRNAs were enriched in many signaling pathways related to FD, as well as GO terms related to molecular binding and enzyme activity. Based on the analysis of the ceRNA network (CRN), 34 nodes (1 DElncRNAs, 10 DEcircRNAs, 14 DEmiRNAs, and 9 DEmRNAs) and 35 interactions (17 DEcircRNAs–DEmRNAs, 2 DElncRNAs–DEmiRNAs, and 16 DEmRNA–DEmiRNAs) implied that the CRN could be involved in the FD of goats. In conclusion, we described gene regulation by DERNAs and lncRNA/circRNA–miRNA–mRNA CRNs in the FD of goats. This study provided insights into the genetic basis of FD in precise transcriptional regulation.
Collapse
|