1
|
Harahap IA, Suliburska J, Karaca AC, Capanoglu E, Esatbeyoglu T. Fermented soy products: A review of bioactives for health from fermentation to functionality. Compr Rev Food Sci Food Saf 2025; 24:e70080. [PMID: 39676350 DOI: 10.1111/1541-4337.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The increasing prevalence of metabolic diseases and the global drive toward achieving Sustainable Development Goals (SDGs) underscore the need for sustainable, nutrient-dense foods. Soybeans (Glycine max), a critical global crop, offer promising solutions; however, their predominant use as animal feed raises concerns regarding food security and environmental sustainability. Fermented soy products-including tempeh, natto, and miso-are rich in bioactive compounds such as peptides and isoflavones, which offer potential therapeutic effects and hold cultural and nutritional significance. These fermented products provide bioactive profiles with unique health-promoting properties. This review critically examines the bioactive compounds generated through fermentation, focusing on their bioconversion pathways in the gastrointestinal tract and their metabolic implications for human health. Recent consumer demand for novel food ingredients with additional biological benefits has fueled research into advanced extraction techniques, enhancing the functional applications of bioactive compounds from these soy-based products. This review further explores innovations in extraction methods that improve bioactive yield and sustainability, reinforcing the applicability of these compounds in health-promoting food interventions. The originality of this review lies in its in-depth exploration of the gastrointestinal bioconversion of fermented soy bioactive compounds alongside the latest sustainable extraction methods designed to optimize their use. Future research should aim to refine fermentation and extraction processes, investigate synergistic microbial interactions, and develop environmentally sustainable production methods. These efforts have the potential to position fermented soy products as essential contributors to global nutritional security and sustainable food systems, addressing both public health and environmental needs.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
- Research Organization for Health, National Research and Innovation Agency, Bogor, Indonesia
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
2
|
Rizal S, Kustyawati ME, Murhadi, Sari RK, Hidayat R. Microbiological, sensory, and chemical properties of high-quality tempeh made with instant Mosaccha tempeh inoculum powder. FOOD SCI TECHNOL INT 2024:10820132241264443. [PMID: 39033430 DOI: 10.1177/10820132241264443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The combination of Saccharomyces cerevisiae and Rhizopus oligosporus liquid inoculum has been successfully used to ferment soybeans into tempeh that contains β-glucan. However, using the liquid inoculum of these two microbes as a starter is impractical; so, developing an instant tempeh dry inoculum in powdered form, called the Mosaccha inoculum powder, for ease of use is necessary. This study aimed to determine the best concentration of instant Mosaccha inoculum powder to produce high-quality Mosaccha tempeh. The study used a Complete Randomized Block Design with seven different levels of instant Mosaccha inoculum powder percentage, ranging from 0.3% to 1.8% (w/w). A commercial tempeh inoculum, RAPRIMA, amounting to 0.2%, was used as control. Then, the microbiological (total mold and total yeast) and sensory (color, aroma, texture, and taste) properties were evaluated. The data obtained was analyzed statistically using analysis of variance (ANOVA) and Honestly Significant Difference (HSD) tests at the 5% level. The results showed that the percentage of instant Mosaccha inoculum powder significantly affected the microbiological and sensory properties of Mosaccha tempeh. A concentration of Mosaccha inoculum powder between 0.6% to 1.8% could produce good quality Mosaccha tempeh, but the best Mosaccha tempeh was produced with 1.5% instant Mosaccha inoculum powder, which met the Indonesian National Standards (SNI) 3144:2015, had a very favorable taste, and contained 0.49% β-glucan. Therefore, Mosaccha inoculum in powdered form can be developed and used as a starter in making high-quality tempeh that contains β-glucan.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Lampung, Lampung, Indonesia
| | - Maria Erna Kustyawati
- Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Lampung, Lampung, Indonesia
| | - Murhadi
- Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Lampung, Lampung, Indonesia
| | - Reka Kumala Sari
- Graduate of Department of Agricultural Product Technology, Faculty of Agriculture, Universitas Lampung, Lampung, Indonesia
| | - Rahmat Hidayat
- Department of Industrial Chemical Engineering Technology, Politeknik Negeri Lampung, Lampung, Indonesia
| |
Collapse
|
3
|
Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2024; 64:7648-7670. [PMID: 36916137 DOI: 10.1080/10408398.2023.2188951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fermented soybean products, including Soya sauce, Tempeh, Miso, and Natto have been consumed for decades, mainly in Asian countries. Beans are processed using either solid-state fermentation, submerged fermentation, or a sequential of both methods. Traditional ways are still used to conduct the fermentation processes, which, depending on the fermented products, might take a few days or even years to complete. Diverse microorganisms were detected during fermentation in various processes with Bacillus species or filamentous fungi being the two main dominant functional groups. Microbial activities were essential to increase the bean's digestibility, nutritional value, and sensory quality, as well as lower its antinutritive factors. The scientific understanding of fermentation microbial communities, their enzymes, and their metabolic activities, however, still requires further development. The use of a starter culture is crucial, to control the fermentation process and ensure product consistency. A broad understanding of the spontaneous fermentation ecology, biochemistry, and the current starter culture technology is essential to facilitate further improvement and meet the needs of the current extending and sustainable economy. This review covers what is currently known about these aspects and reveals the limited available information, along with the possible directions for future starter culture design in soybean fermentation.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| |
Collapse
|
4
|
Chin XH, Elhalis H, Chow Y, Liu SQ. Enhancing food safety in soybean fermentation through strategic implementation of starter cultures. Heliyon 2024; 10:e25007. [PMID: 38312583 PMCID: PMC10835011 DOI: 10.1016/j.heliyon.2024.e25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Fermented soybean products have played a significant role in Asian diets for a long time. Due to their diverse flavours, nutritional benefits, and potential health-promoting properties, they have gained a huge popularity globally in recent years. Traditionally, soybean fermentation is conducted spontaneously, using microorganisms naturally present in the environment, or inoculating with traditional starter cultures. However, many potential health risks are associated with consumption of these traditionally fermented soybean products due to the presence of food pathogens, high levels of biogenic amines and mycotoxins. The use of starter culture technology in fermentation has been well-studied in recent years and confers significant advantages over traditional fermentation methods due to strict control of the microorganisms inoculated. This review provides a comprehensive review of microbial safety and health risks associated with consumption of traditional fermented soybean products, and how adopting starter culture technology can help mitigate these risks to ensure the safety of these products.
Collapse
Affiliation(s)
- Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| | - Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
- Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore, 138669, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117543, Singapore
| |
Collapse
|
5
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
6
|
Zhang D, Ye Y, Tan B. Comparative study of solid-state fermentation with different microbial strains on the bioactive compounds and microstructure of brown rice. Food Chem 2022; 397:133735. [PMID: 35914455 DOI: 10.1016/j.foodchem.2022.133735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
The effects of solid-state fermentation (SSF) with Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were determined on the bioactive compound content and grain microstructure of brown rice (BR). After SSF, the β-glucan, arabinoxylans, γ-oryzanol, thiamine, riboflavin, phenolic, and flavonoid contents increased by 147, 11.2, 30.5, 16.9, 21.1, 76%, and 49.6%, respectively, indicating a marked increase in bioactive compound content. In addition, the water-soluble dietary fiber and arabinoxylan contents, and free phenolic and flavonoid contents significantly increased (p < 0.05). These changes were consistent with the microstructural changes observed after SSF, i.e., the outer cortex was rough, cracked, porous and separated from the starch endosperm, which was also cracked and porous; this should increase the dietary bioavailability of the bioactive compounds. SSF, especially with A. oryzae and Lb. plantarum, greatly enhanced the bioactive compound content in BR and has great potential in BR processing.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Yanjun Ye
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| |
Collapse
|
7
|
Nutrition and Sensory Evaluation of Solid-State Fermented Brown Rice Based on Cluster and Principal Component Analysis. Foods 2022; 11:foods11111560. [PMID: 35681309 PMCID: PMC9180828 DOI: 10.3390/foods11111560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Consumption of brown rice (BR) contributes to the implementation of the grain-saving policy and improvement of residents’ nutrient status. However, the undesirable cooking properties, poor palatability, and presence of anti-nutritional factors limit the demand of BR products. To enhance its quality, BR was solid-state fermented with single and mixed strains of Lb. plantarum, S. cerevisiae, R. oryzae, A. oryzae, and N. sitophila. Effects of solid-state fermentation (SSF) with different strains on the nutrition and sensory characteristics of BR were analyzed by spectroscopic method, chromatography, and sensory assessment. Contents of arabinoxylans, β-glucan, γ-oryzanol, phenolic, and flavonoid were significantly increased by 41.61%, 136.02%, 30.51%, 106.90%, and 65.08% after SSF, respectively (p < 0.05), while the insoluble dietary fiber and phytic acid contents reduced by 42.69% and 55.92%. The brightness and sensory score of BR significantly improved after SSF. Furthermore, cluster analysis (CA) and principal component analysis (PCA) were employed to evaluate BR quality. Three clusters were obtained according to CA, including BR fermented for 30 h and 48 h, BR fermented for 12 h, and the control group. Based on PCA, the best SSF processing technology was BR fermented with Lb. plantarum (0.5%, v/w) and S. cerevisiae (0.5%, v/w) at 28 °C for 48 h (liquid-to-solid ratio 3:10).
Collapse
|