1
|
Zhao W, Li K, Tang L, Zhang J, Guo H, Zhou X, Luo M, Liu H, Cui R, Zeng M. Coronary Microvascular Dysfunction and Diffuse Myocardial Fibrosis in Patients With Type 2 Diabetes Using Quantitative Perfusion MRI. J Magn Reson Imaging 2024; 60:2395-2406. [PMID: 38376091 DOI: 10.1002/jmri.29296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Imaging techniques that quantitatively and automatically measure changes in the myocardial microcirculation in patients with diabetes are lacking. PURPOSE To detect diabetic myocardial microvascular complications using a novel automatic quantitative perfusion MRI technique, and to explore the relationship between myocardial microcirculation dysfunction and fibrosis. STUDY TYPE Prospective. SUBJECTS 101 patients with type 2 diabetes mellitus (T2DM) (53 without and 48 with complications), 20 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T; modified Look-Locker inversion-recovery sequence; saturation recovery sequence and dual-bolus technique; segmented fast low-angle shot sequence. ASSESSMENT All participants underwent MRI to determine the rest myocardial blood flow (MBF), stress MBF, myocardial perfusion reserve (MPR), and extracellular volume (ECV), which represents the extent of myocardial fibrosis. STATISTICAL TESTS Kolmogorov-Smirnov test, Shapiro-Wilk test, Kruskal-Wallis H test, Mann-Whitney U test, chi-square test, Spearman correlation coefficient, multivariable linear regression analysis. P < 0.05 was considered statistically significant. RESULTS The rest MBF was not significantly different between the T2DM without complications group (1.1, IQR: 0.9-1.3) and the control group (1.1, 1.0-1.3) (P = 1.000), but it was significantly lower in the T2DM with complications group (0.8, 0.6-1.0) than in both other groups. The stress MBF and MPR were significantly lower in the T2DM without complications group (1.9, 1.5-2.3, and 1.7, 1.4-2.1, respectively) than in the control group (3.0, 2.6-3.5, and 2.7, 2.4-3.1, respectively), and were also significantly lower in the T2DM with complications group (1.1, 0.9-1.4, and 1.4, 1.2-1.8, respectively) than in the T2DM without complications group. A decrease in MBF and MPR were significantly associated with an increase in the ECV. DATA CONCLUSION Quantitative perfusion MRI can evaluate myocardial microcirculation dysfunction. In T2DM, there was a significant decrease in both MBF and MPR compared to healthy controls, with the decrease being significantly different between T2DM with and without complications groups. The decrease of MBF was significantly associated with the development of myocardial fibrosis, as determined by ECV. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Wenjin Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leting Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiamin Zhang
- Department of Radiology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd., Changsha, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Meichen Luo
- Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada
| | - Hongduan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rongrong Cui
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mu Zeng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
2
|
Baggiano A, Baessato F, Mushtaq S, Annoni AD, Cannata F, Carerj ML, Del Torto A, Fazzari F, Formenti A, Frappampina A, Fusini L, Junod D, Mancini ME, Mantegazza V, Maragna R, Marchetti F, Sbordone FP, Tassetti L, Volpe A, Guglielmo M, Rossi A, Rovera C, Rabbat MG, Guaricci AI, Cau C, Saba L, Berna G, Sforza C, Pepi M, Pontone G. STress computed tomogRaphy perfusion and stress cArdiac magnetic resonance for ThE manaGement of suspected or known coronarY artery disease: resources and outcomes impact. J Cardiovasc Comput Tomogr 2024; 18:553-558. [PMID: 39147676 DOI: 10.1016/j.jcct.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The aim of this study is to describe resources and outcomes of coronary computed tomography angiography plus Stress CT perfusion (CCTA + Stress-CTP) and stress cardiovascular magnetic resonance (Stress-CMR) in symptomatic patients with suspected or known CAD. METHODS Six hundred and twenty-four consecutive symptomatic patients with intermediate to high-risk pretest likelihood for CAD or previous history of revascularization referred to our hospital for clinically indicated CCTA + Stress-CTP or Stress-CMR were enrolled. Stress-CTP scans were performed in 223 patients while 401 patients performed Stress-CMR. Patient follow-up was performed at 1 year after index test performance. Endpoints were all cardiac events, as a combined endpoint of revascularization, non-fatal MI and death, and hard cardiac events, as combined endpoint of non-fatal MI and death. RESULTS Twenty-nine percent of patients who underwent CCTA + Stress-CTP received revascularization, 7% of subjects assessed with Stress-CMR were treated invasively, and a low number of non-fatal MI and death was observed with both strategies (hard events in 0.4% of patients that had CCTA + Stress-CTP as index test, and in 3% of patients evaluated with Stress-CMR). According to the predefined endpoints, CCTA + Stress-CTP group showed high rate of all cardiac events and low rate of hard cardiac events, respectively. The cumulative costs were 1970 ± 2506 Euro and 733 ± 1418 Euro for the CCTA + Stress-CTP group and Stress-CMR group, respectively. CONCLUSIONS The use of CCTA + Stress-CTP strategy was associated with high referral to revascularization but with a favourable trend in terms of hard cardiac events and diagnostic yield in identifying individuals at lower risk of adverse events despite the presence of CAD.
Collapse
Affiliation(s)
- Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | | | | | | | | | | | | | | | | | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical engineering, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Claudio Cau
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Luca Saba
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Chiarella Sforza
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Mauro Pepi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Basile P, Soldato N, Pedio E, Siena P, Carella MC, Dentamaro I, Khan Y, Baggiano A, Mushtaq S, Forleo C, Ciccone MM, Pontone G, Guaricci AI. Cardiac magnetic resonance reveals concealed structural heart disease in patients with frequent premature ventricular contractions and normal echocardiography: A systematic review. Int J Cardiol 2024; 412:132306. [PMID: 38950789 DOI: 10.1016/j.ijcard.2024.132306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Premature ventricular contractions (PVCs) are a common form of arrhythmic events, often representing an idiopathic and benign condition without further therapeutic interventions. However, in certain circumstances PVCs may represent the epiphenomenon of a concealed structural heart disease (SHD). Surface 12‑leads EKG and 24-h dynamic EKG are necessary to assess their main characteristics such as site of origin, frequency and complexity. Echocardiography represents the first-line imaging tool recommended to evaluate cardiac structures and function. Cardiac Magnetic Resonance (CMR) is recognized as a superior modality for detecting structural cardiac alterations, that might evade detection by conventional echocardiography. Moreover, in specific populations such as athletes, CMR may have a crucial role to exclude a concealed SHD and the risk of serious arrhythmic events during sport activity. Some clinical characteristics such as male sex, older age or family history of sudden cardiac death (SCD) or cardiomyopathy, and some electrocardiographic features of PVCs, in particular a right branch bundle block (RBBB) with superior/intermediate axis morphology, the reproducibility of VAs during exercise test (ET) or the evidence of complex ventricular arrhythmias, may warrant a CMR evaluation, due to the high probability of SHD. In this systematic review our objective was to provide an exhaustive overview on the role of CMR in detecting a concealed SHD in patients with high daily burden of PVCs and a normal echocardiographic evaluation, paving the way for a more extensive utilization of CMR in presence of certain high-risk clinical and/or EKG features identified during the diagnostic workup.
Collapse
Affiliation(s)
- Paolo Basile
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Nicolò Soldato
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Erika Pedio
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Paola Siena
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Maria Cristina Carella
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Ilaria Dentamaro
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Yamna Khan
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cinzia Forleo
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Marco Matteo Ciccone
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Andrea Igoren Guaricci
- Interdisciplinary Department of Medicine, "Aldo Moro" University School of Medicine, Bari, Italy.
| |
Collapse
|
4
|
Yarahmadi P, Forouzannia SM, Forouzannia SA, Malik SB, Yousefifard M, Nguyen PK. Prognostic Value of Qualitative and Quantitative Stress CMR in Patients With Known or Suspected CAD. JACC Cardiovasc Imaging 2024; 17:248-265. [PMID: 37632499 DOI: 10.1016/j.jcmg.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Recent studies suggest that quantitative cardiac magnetic resonance (CMR) may have more accuracy than qualitative CMR in coronary artery disease (CAD) diagnosis. However, the prognostic value of quantitative and qualitative CMR has not been compared systematically. OBJECTIVES The objective was to conduct a systematic review and meta-analysis assessing the utility of qualitative and quantitative stress CMR in the prognosis of patients with known or suspected CAD. METHODS A comprehensive search was performed through Embase, Scopus, Web of Science, and Medline. Studies that used qualitative vasodilator CMR or quantitative CMR assessments to compare the prognosis of patients with positive and negative CMR results were extracted. A meta-analysis was then performed to assess: 1) major adverse cardiovascular events (MACE) including cardiac death, nonfatal myocardial infarction (MI), unstable angina, and coronary revascularization; and 2) cardiac hard events defined as the composite of cardiac death and nonfatal MI. RESULTS Forty-one studies with 38,030 patients were included in this systematic review. MACE occurred significantly more in patients with positive qualitative (HR: 3.86; 95% CI: 3.28-4.54) and quantitative (HR: 4.60; 95% CI: 1.60-13.21) CMR assessments. There was no significant difference between qualitative and quantitative CMR assessments in predicting MACE (P = 0.75). In studies with qualitative CMR assessment, cardiac hard events (OR: 7.21; 95% CI: 4.99-10.41), cardiac death (OR: 5.63; 95% CI: 2.46-12.92), nonfatal MI (OR: 7.46; 95% CI: 3.49-15.96), coronary revascularization (OR: 6.34; 95% CI: 3.42-1.75), and all-cause mortality (HR: 1.66; 95% CI: 1.12-2.47) were higher in patients with positive CMR. CONCLUSIONS The presence of myocardial ischemia on CMR is associated with worse clinical outcomes in patients with known or suspected CAD. Both qualitative and quantitative stress CMR assessments are helpful tools for predicting clinical outcomes.
Collapse
Affiliation(s)
- Pourya Yarahmadi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA
| | | | - Seyed Ali Forouzannia
- Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sachin B Malik
- Department of Radiology, Division of Cardiovascular Imaging, Stanford University, Stanford, California, USA
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Patricia K Nguyen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA.
| |
Collapse
|
5
|
Weberling LD, Seitz S, Salatzki J, Ochs A, Heins J, Haney AC, Siry D, Frey N, André F, Steen H. Safety of dobutamine or adenosine stress cardiac magnetic resonance imaging in patients with left ventricular thrombus. Clin Res Cardiol 2024; 113:446-455. [PMID: 37843560 PMCID: PMC10881726 DOI: 10.1007/s00392-023-02317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Left ventricular (LV) thrombus formation is a common but potentially serious complication, typically occurring after myocardial infarction. Due to perceived high thromboembolic risk and lack of safety data, stress cardiac magnetic resonance (CMR) imaging especially with dobutamine is usually avoided despite its high diagnostic yield. This study aimed to investigate the characteristics, safety and outcome of patients with LV thrombus undergoing dobutamine or vasodilator stress CMR. METHODS Patients undergoing stress CMR with concomitant LV thrombus were retrospectively included. Risk factors, comorbidities, and previous embolic events were recorded. Periprocedural safety was assessed for up to 48 h following the examination. Major adverse cardiac events (MACE) 12 months before the diagnosis were compared to 12 months after the exam and between patients and a matched control group. Additionally, patients were followed up for all-cause mortality. RESULTS 95 patients (78 male, 65 ± 10.7 years) were included. Among them, 43 patients underwent dobutamine (36 high-dose, 7 low-dose) and 52 vasodilator stress CMR. Periprocedural safety was excellent with no adverse events. During a period of 24 months, 27 MACE (14.7%) occurred in patients and controls with no statistical difference between groups. During a median follow-up of 33.7 months (IQR 37.6 months), 6 deaths (6.3%) occurred. Type of stress agent, thrombus mobility, or protrusion were not correlated to embolic events or death. CONCLUSION The addition of a stress test to a CMR exam is safe and does increase the generally high cardioembolic event rate in LV thrombus patients. Therefore, it is useful to support reperfusion decision-making.
Collapse
Affiliation(s)
- Lukas D Weberling
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| | | | - Janek Salatzki
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Ochs
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jannick Heins
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ailís C Haney
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Deborah Siry
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Henning Steen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Dell’Aversana F, Tedeschi C, Comune R, Gallo L, Ferrandino G, Basco E, Tamburrini S, Sica G, Masala S, Scaglione M, Liguori C. Advanced Cardiac Imaging and Women's Chest Pain: A Question of Gender. Diagnostics (Basel) 2023; 13:2611. [PMID: 37568974 PMCID: PMC10416986 DOI: 10.3390/diagnostics13152611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Awareness of gender differences in cardiovascular disease (CVD) has increased: both the different impact of traditional cardiovascular risk factors on women and the existence of sex-specific risk factors have been demonstrated. Therefore, it is essential to recognize typical aspects of ischemic heart disease (IHD) in women, who usually show a lower prevalence of obstructive coronary artery disease (CAD) as a cause of acute coronary syndrome (ACS). It is also important to know how to recognize pathologies that can cause acute chest pain with a higher incidence in women, such as spontaneous coronary artery dissection (SCAD) and myocardial infarction with non-obstructive coronary arteries (MINOCA). Coronary computed tomography angiography (CCTA) and cardiac magnetic resonance imaging (CMR) gained a pivotal role in the context of cardiac emergencies. Thus, the aim of our review is to investigate the most frequent scenarios in women with acute chest pain and how advanced cardiac imaging can help in the management and diagnosis of ACS.
Collapse
Affiliation(s)
- Federica Dell’Aversana
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Napoli, Italy
| | - Carlo Tedeschi
- Operational Unit of Cardiology, Presidio Sanitario Intermedio Napoli Est, ASL-Napoli 1 Centro, 80144 Napoli, Italy;
| | - Rosita Comune
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Napoli, Italy
| | - Luigi Gallo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Napoli, Italy
| | - Giovanni Ferrandino
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Napoli, Italy; (G.F.)
| | - Emilia Basco
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Napoli, Italy
| | - Stefania Tamburrini
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Napoli, Italy; (G.F.)
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital Azienda dei Colli, 80131 Napoli, Italy
| | - Salvatore Masala
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Radiology, James Cook University Hospital, Middlesbrough TS4 3BW, UK
| | - Carlo Liguori
- Department of Radiology, Ospedale del Mare-ASL Napoli 1, 80147 Napoli, Italy; (G.F.)
| |
Collapse
|
8
|
Bergamaschi L, Pavon AG, Angeli F, Tuttolomondo D, Belmonte M, Armillotta M, Sansonetti A, Foà A, Paolisso P, Baggiano A, Mushtaq S, De Zan G, Carriero S, Cramer MJ, Teske AJ, Broekhuizen L, van der Bilt I, Muscogiuri G, Sironi S, Leo LA, Gaibazzi N, Lovato L, Pontone G, Pizzi C, Guglielmo M. The Role of Non-Invasive Multimodality Imaging in Chronic Coronary Syndrome: Anatomical and Functional Pathways. Diagnostics (Basel) 2023; 13:2083. [PMID: 37370978 PMCID: PMC10297526 DOI: 10.3390/diagnostics13122083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Coronary artery disease (CAD) is one of the major causes of mortality and morbidity worldwide, with a high socioeconomic impact. Currently, various guidelines and recommendations have been published about chronic coronary syndromes (CCS). According to the recent European Society of Cardiology guidelines on chronic coronary syndrome, a multimodal imaging approach is strongly recommended in the evaluation of patients with suspected CAD. Today, in the current practice, non-invasive imaging methods can assess coronary anatomy through coronary computed tomography angiography (CCTA) and/or inducible myocardial ischemia through functional stress testing (stress echocardiography, cardiac magnetic resonance imaging, single photon emission computed tomography-SPECT, or positron emission tomography-PET). However, recent trials (ISCHEMIA and REVIVED) have cast doubt on the previous conception of the management of patients with CCS, and nowadays it is essential to understand the limitations and strengths of each imaging method and, specifically, when to choose a functional approach focused on the ischemia versus a coronary anatomy-based one. Finally, the concept of a pathophysiology-driven treatment of these patients emerged as an important goal of multimodal imaging, integrating 'anatomical' and 'functional' information. The present review aims to provide an overview of non-invasive imaging modalities for the comprehensive management of CCS patients.
Collapse
Affiliation(s)
- Luca Bergamaschi
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete, 48, 6900 Lugano, Switzerland (A.G.P.); (L.A.L.)
| | - Anna Giulia Pavon
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete, 48, 6900 Lugano, Switzerland (A.G.P.); (L.A.L.)
| | - Francesco Angeli
- Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (M.A.); (A.S.); (A.F.); (C.P.)
- Department of Medical and Surgical Sciences—DIMEC—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Domenico Tuttolomondo
- Department of Cardiology, Parma University Hospital, Viale Antonio Gramsci 14, 43126 Parma, Italy; (D.T.); (N.G.)
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV-Clinic, 9300 Aalst, Belgium;
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy;
| | - Matteo Armillotta
- Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (M.A.); (A.S.); (A.F.); (C.P.)
- Department of Medical and Surgical Sciences—DIMEC—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Angelo Sansonetti
- Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (M.A.); (A.S.); (A.F.); (C.P.)
- Department of Medical and Surgical Sciences—DIMEC—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alberto Foà
- Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (M.A.); (A.S.); (A.F.); (C.P.)
- Department of Medical and Surgical Sciences—DIMEC—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Pasquale Paolisso
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy;
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Giulia De Zan
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Serena Carriero
- Postgraduate School of Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy;
| | - Maarten-Jan Cramer
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
| | - Arco J. Teske
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
| | - Lysette Broekhuizen
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
| | - Ivo van der Bilt
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
- Department of Cardiology, Haga Teaching Hospital, 2545 GM The Hague, The Netherlands
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Laura Anna Leo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete, 48, 6900 Lugano, Switzerland (A.G.P.); (L.A.L.)
| | - Nicola Gaibazzi
- Department of Cardiology, Parma University Hospital, Viale Antonio Gramsci 14, 43126 Parma, Italy; (D.T.); (N.G.)
| | - Luigi Lovato
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy;
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Carmine Pizzi
- Cardiology Unit, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy; (F.A.); (M.A.); (A.S.); (A.F.); (C.P.)
- Department of Medical and Surgical Sciences—DIMEC—Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (G.D.Z.); (M.-J.C.); (A.J.T.); (L.B.); (I.v.d.B.)
- Department of Cardiology, Haga Teaching Hospital, 2545 GM The Hague, The Netherlands
| |
Collapse
|
9
|
Groenhoff L, De Zan G, Costantini P, Siani A, Ostillio E, Carriero S, Muscogiuri G, Bergamaschi L, Patti G, Pizzi C, Sironi S, Pavon AG, Carriero A, Guglielmo M. The Non-Invasive Diagnosis of Chronic Coronary Syndrome: A Focus on Stress Computed Tomography Perfusion and Stress Cardiac Magnetic Resonance. J Clin Med 2023; 12:jcm12113793. [PMID: 37297986 DOI: 10.3390/jcm12113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Coronary artery disease is still a major cause of death and morbidity worldwide. In the setting of chronic coronary disease, demonstration of inducible ischemia is mandatory to address treatment. Consequently, scientific and technological efforts were made in response to the request for non-invasive diagnostic tools with better sensitivity and specificity. To date, clinicians have at their disposal a wide range of stress-imaging techniques. Among others, stress cardiac magnetic resonance (S-CMR) and computed tomography perfusion (CTP) techniques both demonstrated their diagnostic efficacy and prognostic value in clinical trials when compared to other non-invasive ischemia-assessing techniques and invasive fractional flow reserve measurement techniques. Standardized protocols for both S-CMR and CTP usually imply the administration of vasodilator agents to induce hyperemia and contrast agents to depict perfusion defects. However, both methods have their own limitations, meaning that optimizing their performance still requires a patient-tailored approach. This review focuses on the characteristics, drawbacks, and future perspectives of these two techniques.
Collapse
Affiliation(s)
- Léon Groenhoff
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Giulia De Zan
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Pietro Costantini
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Agnese Siani
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Eleonora Ostillio
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Anna Giulia Pavon
- Cardiovascular Department, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | | | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands
| |
Collapse
|
10
|
Zhou W, Sin J, Yan AT, Wang H, Lu J, Li Y, Kim P, Patel AR, Ng MY. Qualitative and Quantitative Stress Perfusion Cardiac Magnetic Resonance in Clinical Practice: A Comprehensive Review. Diagnostics (Basel) 2023; 13:524. [PMID: 36766629 PMCID: PMC9914769 DOI: 10.3390/diagnostics13030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Stress cardiovascular magnetic resonance (CMR) imaging is a well-validated non-invasive stress test to diagnose significant coronary artery disease (CAD), with higher diagnostic accuracy than other common functional imaging modalities. One-stop assessment of myocardial ischemia, cardiac function, and myocardial viability qualitatively and quantitatively has been proven to be a cost-effective method in clinical practice for CAD evaluation. Beyond diagnosis, stress CMR also provides prognostic information and guides coronary revascularisation. In addition to CAD, there is a large body of literature demonstrating CMR's diagnostic performance and prognostic value in other common cardiovascular diseases (CVDs), especially coronary microvascular dysfunction (CMD). This review focuses on the clinical applications of stress CMR, including stress CMR scanning methods, practical interpretation of stress CMR images, and clinical utility of stress CMR in a setting of CVDs with possible myocardial ischemia.
Collapse
Affiliation(s)
- Wenli Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Jason Sin
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew T. Yan
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | | | - Jing Lu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No. 600, Yishan Road, Shanghai 200233, China
| | - Paul Kim
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Amit R. Patel
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ming-Yen Ng
- Department of Medical Imaging, HKU-Shenzhen Hospital, Shenzhen 518009, China
- Department of Diagnostic Radiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Ueng KC, Chiang CE, Chao TH, Wu YW, Lee WL, Li YH, Ting KH, Su CH, Lin HJ, Su TC, Liu TJ, Lin TH, Hsu PC, Wang YC, Chen ZC, Jen HL, Lin PL, Ko FY, Yen HW, Chen WJ, Hou CJY. 2023 Guidelines of the Taiwan Society of Cardiology on the Diagnosis and Management of Chronic Coronary Syndrome. ACTA CARDIOLOGICA SINICA 2023; 39:4-96. [PMID: 36685161 PMCID: PMC9829849 DOI: 10.6515/acs.202301_39(1).20221103a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 01/24/2023]
Abstract
Coronary artery disease (CAD) covers a wide spectrum from persons who are asymptomatic to those presenting with acute coronary syndromes (ACS) and sudden cardiac death. Coronary atherosclerotic disease is a chronic, progressive process that leads to atherosclerotic plaque development and progression within the epicardial coronary arteries. Being a dynamic process, CAD generally presents with a prolonged stable phase, which may then suddenly become unstable and lead to an acute coronary event. Thus, the concept of "stable CAD" may be misleading, as the risk for acute events continues to exist, despite the use of pharmacological therapies and revascularization. Many advances in coronary care have been made, and guidelines from other international societies have been updated. The 2023 guidelines of the Taiwan Society of Cardiology for CAD introduce a new concept that categorizes the disease entity according to its clinical presentation into acute or chronic coronary syndromes (ACS and CCS, respectively). Previously defined as stable CAD, CCS include a heterogeneous population with or without chest pain, with or without prior ACS, and with or without previous coronary revascularization procedures. As cardiologists, we now face the complexity of CAD, which involves not only the epicardial but also the microcirculatory domains of the coronary circulation and the myocardium. New findings about the development and progression of coronary atherosclerosis have changed the clinical landscape. After a nearly 50-year ischemia-centric paradigm of coronary stenosis, growing evidence indicates that coronary atherosclerosis and its features are both diagnostic and therapeutic targets beyond obstructive CAD. Taken together, these factors have shifted the clinicians' focus from the functional evaluation of coronary ischemia to the anatomic burden of disease. Research over the past decades has strengthened the case for prevention and optimal medical therapy as central interventions in patients with CCS. Even though functional capacity has clear prognostic implications, it does not include the evaluation of non-obstructive lesions, plaque burden or additional risk-modifying factors beyond epicardial coronary stenosis-driven ischemia. The recommended first-line diagnostic tests for CCS now include coronary computed tomographic angiography, an increasingly used anatomic imaging modality capable of detecting not only obstructive but also non-obstructive coronary plaques that may be missed with stress testing. This non-invasive anatomical modality improves risk assessment and potentially allows for the appropriate allocation of preventive therapies. Initial invasive strategies cannot improve mortality or the risk of myocardial infarction. Emphasis should be placed on optimizing the control of risk factors through preventive measures, and invasive strategies should be reserved for highly selected patients with refractory symptoms, high ischemic burden, high-risk anatomies, and hemodynamically significant lesions. These guidelines provide current evidence-based diagnosis and treatment recommendations. However, the guidelines are not mandatory, and members of the Task Force fully realize that the treatment of CCS should be individualized to address each patient's circumstances. Ultimately, the decision of healthcare professionals is most important in clinical practice.
Collapse
Affiliation(s)
- Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
| | - Wen-Lieng Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital; College of Medicine, National Cheng Kung University, Tainan
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Hung-Ju Lin
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine, Taipei
| | - Tsun-Jui Liu
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Po-Chao Hsu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan
| | - Hsu-Lung Jen
- Division of Cardiology, Cheng Hsin Rehabilitation Medical Center, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Feng-You Ko
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, Min Sheng General Hospital, Taoyuan
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
12
|
Weberling LD, Lossnitzer D, Frey N, André F. Coronary Computed Tomography vs. Cardiac Magnetic Resonance Imaging in the Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2022; 13:diagnostics13010125. [PMID: 36611417 PMCID: PMC9818886 DOI: 10.3390/diagnostics13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Coronary artery disease (CAD) represents a widespread burden to both individual and public health, steadily rising across the globe. The current guidelines recommend non-invasive anatomical or functional testing prior to invasive procedures. Both coronary computed tomography angiography (cCTA) and stress cardiac magnetic resonance imaging (CMR) are appropriate imaging modalities, which are increasingly used in these patients. Both exhibit excellent safety profiles and high diagnostic accuracy. In the last decade, cCTA image quality has improved, radiation exposure has decreased and functional information such as CT-derived fractional flow reserve or perfusion can complement anatomic evaluation. CMR has become more robust and faster, and advances have been made in functional assessment and tissue characterization allowing for earlier and better risk stratification. This review compares both imaging modalities regarding their strengths and weaknesses in the assessment of CAD and aims to give physicians rationales to select the most appropriate modality for individual patients.
Collapse
Affiliation(s)
- Lukas D. Weberling
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-8676
| | - Dirk Lossnitzer
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Lala RI, Mercea S, Jipa RA, Puschita M, Pop-Moldovan A. The chronic coronary syndrome—Heart failure roundabout: A multimodality imaging workflow approach. Front Cardiovasc Med 2022; 9:1019529. [DOI: 10.3389/fcvm.2022.1019529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Heart failure (HF) is a complex syndrome of considerable burden with high mortality and hospitalization rates. Approximately two-thirds of patients with HF have ischemic etiology, which makes crucial the identification of relevant coronary artery disease (CAD). Moreover, patients with chronic coronary syndrome (CCS) can first show signs of dyspnea and left ventricular (LV) dysfunction. If establishing a diagnosis of HF and consequent management is clear enough, it will not be the same when it comes to recommendations for etiology assessment. Ischemic heart disease is the most studied disease by cardiac multimodality imaging with excellent diagnostic performance. Based on this aspect, the high prevalence of CAD, the worst outcome—HF patients should undergo a diagnostic work-up using these multimodality imaging techniques. The aim of this mini-review is to provide insights on multimodality imaging for diagnosing CCS in patients with new onset of HF and propose a diagnostic work-up based on current international studies and guidelines.
Collapse
|
14
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
15
|
Baggiano A, Italiano G, Guglielmo M, Fusini L, Guaricci AI, Maragna R, Giacari CM, Mushtaq S, Conte E, Annoni AD, Formenti A, Mancini ME, Andreini D, Rabbat M, Pepi M, Pontone G. Changing Paradigms in the Diagnosis of Ischemic Heart Disease by Multimodality Imaging. J Clin Med 2022; 11:jcm11030477. [PMID: 35159929 PMCID: PMC8836710 DOI: 10.3390/jcm11030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary artery disease (CAD) represents the most common cardiovascular disease, with high morbidity and mortality. Historically patients with chest pain of suspected coronary origin have been assessed with functional tests, capable to detect haemodynamic consequences of coronary obstructions through depiction of electrocardiographic changes, myocardial perfusion defects or regional wall motion abnormalities under stress condition. Stress echocardiography (SE), single-photon emission computed tomography (SPECT), positron emission tomography (PET) and cardiovascular magnetic resonance (CMR) represent the functional techniques currently available, and technical developments contributed to increased diagnostic performance of these techniques. More recently, cardiac computed tomography angiography (cCTA) has been developed as a non-invasive anatomical test for a direct visualisation of coronary vessels and detailed description of atherosclerotic burden. Cardiovascular imaging techniques have dramatically enhanced our knowledge regarding physiological aspects and myocardial implications of CAD. Recently, after the publication of important trials, international guidelines recognised these changes, updating indications and level of recommendations. This review aims to summarise current standards with main novelties and specific limitations, and a diagnostic algorithm for up-to-date clinical management is also proposed.
Collapse
Affiliation(s)
- Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gianpiero Italiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, 70124 Bari, Italy;
| | - Riccardo Maragna
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Carlo Maria Giacari
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Saima Mushtaq
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Edoardo Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Daniele Annoni
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Alberto Formenti
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Maria Elisabetta Mancini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Daniele Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Mark Rabbat
- Division of Cardiology, Department of Medicine and Radiology, Loyola University of Chicago, Chicago, IL 60660, USA;
- Division of Cardiology, Department of Medicine, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Mauro Pepi
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Correspondence: ; Tel.: +39-02-5800-2574; Fax: +39-02-5800-2231
| |
Collapse
|
16
|
Maragna R, Giacari CM, Guglielmo M, Baggiano A, Fusini L, Guaricci AI, Rossi A, Rabbat M, Pontone G. Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management. Front Cardiovasc Med 2021; 8:736223. [PMID: 34631834 PMCID: PMC8493089 DOI: 10.3389/fcvm.2021.736223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.
Collapse
Affiliation(s)
- Riccardo Maragna
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Carlo Maria Giacari
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marco Guglielmo
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Baggiano
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Laura Fusini
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, Bari, Italy
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Mark Rabbat
- Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Gianluca Pontone
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
17
|
Abstract
Ischemic cardiomyopathy (ICM) is one of the most common causes of congestive heart failure. In patients with ICM, tissue characterization with cardiac magnetic resonance imaging (CMR) allows for evaluation of myocardial abnormalities in acute and chronic settings. Myocardial edema, microvascular obstruction (MVO), intracardiac thrombus, intramyocardial hemorrhage, and late gadolinium enhancement of the myocardium are easily depicted using standard CMR sequences. In the acute setting, tissue characterization is mainly focused on assessment of ventricular thrombus and MVO, which are associated with poor prognosis. Conversely, in chronic ICM, it is important to depict late gadolinium enhancement and myocardial ischemia using stress perfusion sequences. Overall, with CMR's ability to accurately characterize myocardial tissue in acute and chronic ICM, it represents a valuable diagnostic and prognostic imaging method for treatment planning. In particular, tissue characterization abnormalities in the acute setting can provide information regarding the patients that may develop major adverse cardiac event and show the presence of ventricular thrombus; in the chronic setting, evaluation of viable myocardium can be fundamental for planning myocardial revascularization. In this review, the main findings on tissue characterization are illustrated in acute and chronic settings using qualitative and quantitative tissue characterization.
Collapse
|
18
|
Pradella S, Zantonelli G, Grazzini G, Cozzi D, Danti G, Acquafresca M, Miele V. The Radiologist as a Gatekeeper in Chest Pain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6677. [PMID: 34205792 PMCID: PMC8296491 DOI: 10.3390/ijerph18126677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Chest pain is a symptom that can be found in life-threatening conditions such as acute coronary syndrome (ACS). Those patients requiring invasive coronary angiography treatment or surgery should be identified. Often the clinical setting and laboratory tests are not sufficient to rule out a coronary or aortic syndrome. Cardiac radiological imaging has evolved in recent years both in magnetic resonance (MR) and in computed tomography (CT). CT, in particular, due to its temporal and spatial resolution, the quickness of the examination, and the availability of scanners, is suitable for the evaluation of these patients. In particular, the latest-generation CT scanners allow the exclusion of diagnoses such as coronary artery disease and aortic pathology, thereby reducing the patient's stay in hospital and safely selecting patients by distinguishing those who do not need further treatment from those who will need more- or less-invasive therapies. CT additionally reduces costs by improving long-term patient outcome. The limitations related to patient characteristics and those related to radiation exposure are weakening with the improvement of CT technology.
Collapse
Affiliation(s)
- Silvia Pradella
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Giulia Zantonelli
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Diletta Cozzi
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Manlio Acquafresca
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy; (G.Z.); (G.G.); (D.C.); (G.D.); (M.A.); (V.M.)
| |
Collapse
|