1
|
Zhu F, Yang M, Wang D, Jiang Y, Jia C, Fu Y, Yu A, Liu H, Wang M, Wang T, Liu H, Li J. Spatial distribution of maternal factors in pig mature oocytes. Anim Biotechnol 2024; 35:2394692. [PMID: 39185998 DOI: 10.1080/10495398.2024.2394692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
It is known that asymmetrical maternal transcripts play an important role in the cell fate of the early embryo, but few studies are available in mammal oocytes especially in pig. To investigate the spatial factors in pig oocytes, the oriented bisection was established for collecting karyoplasts (NSOs) and cytoplasts (SSOs) with more than 95% efficiency. Subsequently, RNA-Seq and LC-MS/MS analysis were performed on NSOs and SSOs. Although no differentially expressed genes (DEGs) could be detected between NSOs and SSOs, 89 of the differentially expressed proteins (DEPs) were detected, that 58 proteins higher expressed but 31 proteins lower expressed in NSOs compared with SSOs. These DEPs mainly participated in the 'cell cycle' and 'ribosome' pathway, while the up-regulated DEPs were mainly GO in 'spindle' and 'positive regulation of translation', and the down-regulated DEPs were in 'cytosolic small ribosomal subunit' and 'mRNA binding'. The up-regulated DEP SIRT5 which are related to the regulation of gene expression, epigenetic were further detected and revealed. A spatial asymmetry of maternal factors at the protein level was firstly detected in pig mature oocytes.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Punetha M, Saini S, Choudhary S, Sharma S, Bala R, Kumar P, Sharma RK, Yadav PS, Datta TK, Kumar D. Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation. Theriogenology 2024; 229:158-168. [PMID: 39178617 DOI: 10.1016/j.theriogenology.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Genome editing is recognized as a powerful tool in agriculture and research, enhancing our understanding of genetic function, diseases, and productivity. However, its progress in buffaloes has lagged behind other mammals due to several challenges, including long gestational periods, single pregnancies, and high raising costs. In this study, we aimed to generate MSTN-edited buffaloes, known for their distinctive double-muscling phenotype, as a proof of concept. To meet our goal, we used somatic cell nuclear transfer (SCNT) and zygotic electroporation (CRISPR-EP) technique. For this, we firstly identified the best transfection method for introduction of RNP complex into fibroblast which was further used for SCNT. For this, we compared the transfection, cleavage efficiency and cell viability of nucleofection and lipofection in adult fibroblasts. The cleavage, transfection efficiency and cell viability of nucleofection group was found to be significantly (P ≤ 0.05) higher than lipofection group. Four MSTN edited colony were generated using nucleofection, out of which three colonies was found to be biallelic and one was monoallelic. Further, we compared the efficacy, embryonic developmental potential and subsequent pregnancy outcome of SCNT and zygotic electroporation. The blastocyst rate of electroporated group was found to be significantly (P ≤ 0.05) higher than SCNT group. However, the zygotic electroporation group resulted into two pregnancies which were confirmed to be MSTN edited. Since, the zygotic electroporation does not require complex micromanipulation techniques associated with SCNT, it has potential for facilitating the genetic modification in large livestock such as buffaloes. The present study lays the basis for inducing genetic alternation with practical or biological significance.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Suman Choudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
| |
Collapse
|
3
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
4
|
Oh SH, Lee SE, Han DH, Yoon JW, Kim SH, Lim ES, Lee HB, Kim EY, Park SP. Treatments of Porcine Nuclear Recipient Oocytes and Somatic Cell Nuclear Transfer-Generated Embryos with Various Reactive Oxygen Species Scavengers Lead to Improvements of Their Quality Parameters and Developmental Competences by Mitigating Oxidative Stress-Related Impacts. Cell Reprogram 2023; 25:73-81. [PMID: 36939858 DOI: 10.1089/cell.2022.0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
This study investigated the antioxidant effects of β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA), and their effects on in vitro maturation of porcine oocytes and subsequent embryonic development of somatic cell nuclear transfer (SCNT). Treatment with 1 μM BCX (BCX-1) increased the developmental rate of porcine oocytes more than treatment with 100 μM HES (HES-100) or 5 μM ICA (ICA-5). The glutathione level and mRNA expression of antioxidant genes (NFE2L2, SOD1, and SOD2) were more increased in the BCX-1 group than in the HES-100 and ICA-5 groups, while the reactive oxygen species level was more decreased. Moreover, BCX improved the developmental capacity and quality of SCNT embryos. The total cell number, apoptotic cell rate, and development-related gene expression were modulated in the BCX-1 group to enhance embryonic development of SCNT. These results show that the antioxidant effects of BCX enhance in vitro maturation of porcine oocytes and subsequent embryonic development of SCNT.
Collapse
Affiliation(s)
- Seung-Hwan Oh
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea.,Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, Jeju, Korea.,Mirae Cell Bio, Seoul, Korea.,Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| |
Collapse
|
5
|
Wu H, Zhou W, Liu H, Cui X, Ma W, Wu H, Li G, Wang L, Zhang J, Zhang X, Ji P, Lian Z, Liu G. Whole-genome methylation analysis reveals epigenetic variation between wild-type and nontransgenic cloned, ASMT transgenic cloned dairy goats generated by the somatic cell nuclear transfer. J Anim Sci Biotechnol 2022; 13:145. [PMID: 36434676 PMCID: PMC9701027 DOI: 10.1186/s40104-022-00764-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND SCNT (somatic cell nuclear transfer) is of great significance to biological research and also to the livestock breeding. However, the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods. This indicates the potential epigenetic variations between them. DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences. In this study, ASMT (acetylserotonin-O-methyltransferase) ovarian overexpression transgenic goat was produced by using SCNT. To investigate whether there are epigenetic differences between cloned and WT (wild type) goats, WGBS (whole-genome bisulfite sequencing) was used to measure the whole-genome methylation of these animals. RESULTS It is observed that the different mCpG sites are mainly present in the intergenic and intronic regions between cloned and WT animals, and their CG-type methylation sites are strongly correlated. DMR (differentially methylated region) lengths are located around 1000 bp, mainly distributed in the exonic, intergenic and intronic functional domains. A total of 56 and 36 DMGs (differentially methylated genes) were identified by GO and KEGG databases, respectively. Functional annotation showed that DMGs were enriched in biological-process, cellular-component, molecular-function and other signaling pathways. A total of 10 identical genes related to growth and development were identified in GO and KEGG databases. CONCLUSION The differences in methylation genes among the tested animals have been identified. A total of 10 DMGs associated with growth and development were identified between cloned and WT animals. The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT. These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology, particularly in goats.
Collapse
Affiliation(s)
- Hao Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| | - Wendi Zhou
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haijun Liu
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xudai Cui
- Qingdao Senmiao Industrial Co., Ltd., Qingdao, 266101 China
| | - Wenkui Ma
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haixin Wu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guangdong Li
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Likai Wang
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary, Academy of Agricultural Sciences of Tianjin, Tianjin, 300192 China
| | - Pengyun Ji
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guoshi Liu
- grid.22935.3f0000 0004 0530 8290National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,Sany Institute of China Agricultural University, Sanya, 572025 China
| |
Collapse
|
6
|
Zhai Y, Yu H, An X, Zhang Z, Zhang M, Zhang S, Li Q, Li Z. Profiling the transcriptomic signatures and identifying the patterns of zygotic genome activation - a comparative analysis between early porcine embryos and their counterparts in other three mammalian species. BMC Genomics 2022; 23:772. [PMID: 36434523 PMCID: PMC9700911 DOI: 10.1186/s12864-022-09015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The transcriptional changes around zygotic genome activation (ZGA) in preimplantation embryos are critical for studying mechanisms of embryonic developmental arrest and searching for key transcription factors. However, studies on the transcription profile of porcine ZGA are limited. RESULTS In this study, we performed RNA sequencing in porcine in vivo developed (IVV) and somatic cell nuclear transfer (SCNT) embryo at different stages and compared the transcriptional activity of porcine embryos with mouse, bovine and human embryos. The results showed that the transcriptome map of the early porcine embryos was significantly changed at the 4-cell stage, and 5821 differentially expressed genes (DEGs) in SCNT embryos failed to be reprogrammed or activated during ZGA, which mainly enrichment to metabolic pathways. c-MYC was identified as the highest expressed transcription factor during ZGA. By treating with 10,058-F4, an inhibitor of c-MYC, the cleavage rate (38.33 ± 3.4%) and blastocyst rate (23.33 ± 4.3%) of porcine embryos were significantly lower than those of the control group (50.82 ± 2.7% and 34.43 ± 1.9%). Cross-species analysis of transcriptome during ZGA showed that pigs and bovines had the highest similarity coefficient in biological processes. KEGG pathway analysis indicated that there were 10 co-shared pathways in the four species. CONCLUSIONS Our results reveal that embryos with impaired developmental competence may be arrested at an early stage of development. c-MYC helps promote ZGA and preimplantation embryonic development in pigs. Pigs and bovines have the highest coefficient of similarity in biological processes during ZGA. This study provides an important reference for further studying the reprogramming regulatory mechanism of porcine embryos during ZGA.
Collapse
Affiliation(s)
- Yanhui Zhai
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Hao Yu
- grid.64924.3d0000 0004 1760 5735College of Animal Science, Jilin University, Changchun, 130062 Jilin China
| | - Xinglan An
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Zhiren Zhang
- grid.452930.90000 0004 1757 8087Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000 Guangdong China
| | - Meng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Sheng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Qi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Ziyi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| |
Collapse
|
7
|
Kang Y, Dai S, Zeng Y, Wang F, Yang P, Yang Z, Pu Y, Li Z, Chen X, Tian B, Si W, Ji W, Niu Y. Cloning and base editing of GFP transgenic rhesus monkey and off-target analysis. SCIENCE ADVANCES 2022; 8:eabo3123. [PMID: 35867792 PMCID: PMC9307242 DOI: 10.1126/sciadv.abo3123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We report the cloning of a 12-year-old transgenic green fluorescent protein (GFP) monkey by somatic cell nuclear transfer (SCNT) and base editing of the embryos, accompanied with safety evaluation of adenine base editors (ABEs). We first show the ability of ABEmax to silence GFP through A-to-G editing of the GFP sequence in 293T cells. Subsequently, using donor cells from a monkey expressing GFP, we have successfully generated 207 ABEmax-edited (SCNT-ABE) and 87 wild-type (SCNT) embryos for embryo transfer, genotyping, and genome and transcriptome analysis. SCNT-ABE and SCNT embryos are compared for off-target analysis without the interference of genetic variants using a new method named as OA-SCNT. ABEmax does not induce obvious off-target DNA mutations but induces widespread off-target RNA mutations, 35% of which are exonic, in edited monkey embryos. These results provide important references for clinical application of ABE.
Collapse
Affiliation(s)
- Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhaohui Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Youwei Pu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zifan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baohong Tian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
8
|
TSA Activates Pluripotency Factors in Porcine Recloned Embryos. Genes (Basel) 2022; 13:genes13040649. [PMID: 35456455 PMCID: PMC9029504 DOI: 10.3390/genes13040649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cloning is of great importance to the production of transgenic and genome-edited livestock. Especially for multiple gene-editing operations, recloning is one of the most feasible methods for livestock. In addition, a multiple-round cloning method is practically necessary for animal molecular breeding. However, cloning efficiency remains extremely low, especially for serial cloning, which seriously impedes the development of livestock breeding based on genome editing technology. The incomplete reprogramming and failure in oocyte activation of some pluripotent factors were deemed to be the main reason for the low efficiency of animal recloning. Here, to overcome this issue, which occurred frequently in the process of animal recloning, we established a reporter system in which fluorescent proteins were driven by pig OCT4 or SOX2 promoter to monitor the reprogramming process in cloned and recloned pig embryos. We studied the effect of different histone deacetylase (HDAC) inhibitors on incomplete reprogramming. Our results showed that Trichostatin A (TSA) could activate pluripotent factors and significantly enhance the development competence of recloned pig embryos, while the other two inhibitors, valproic acid (VPA) and Scriptaid, had little effect on that. Furthermore, we found no difference in OCT4 mRNA abundance between TSA-treated and untreated embryos. These findings suggest that TSA remarkably improves the reprogramming state of pig recloned embryos by restoring the expression of incompletely activated pluripotent genes OCT4 and SOX2.
Collapse
|
9
|
Zarei M, Shamaghdari B, Vahabi Z, Dalman A, Eftekhari Yazdi P. Epigenetic reprogramming in cloned mouse embryos following treatment with DNA methyltransferase and histone deacetylase inhibitors. Syst Biol Reprod Med 2022; 68:227-238. [PMID: 35382652 DOI: 10.1080/19396368.2022.2036868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined the effects of DNA methyltransferase inhibitor - RG108, and histone deacetylase inhibitor - SAHA, on the reprogramming parameters of cloned mouse embryos produced by somatic cell nuclear transfer into oocytes. The programming parameters studied included dynamics of histone reacetylation, developmental rate, DNA methylation, and transcript levels of genes, all of which are pivotal to lineage specification and blastocyst formation. At the pronuclear stage, somatic nucleus-transplanted oocytes treated with 5 µM SAHA presented higher histone acetylation at H3K9, H3K14, H4K16 and H4K12, compared to untreated clones (p < 0.05). At the morula stage, cloned embryos treated with 5 μM RG108 or 5 μM SAHA presented lower DNA methylation intensity compared to untreated clones (p < 0.05), resembling the intensity levels of fertilized embryos. However, these effects were not observed when RG108 and SAHA were used in combination. The rate of morula formation was significantly higher in cloned embryos treated with 5 µM SAHA than in untreated clones, whereas treatment with RG108 resulted in no obvious effects on morula formation rates. On the other hand, the combined treatment with RG108 and SAHA resulted in inferior rates of cloned morula formation, compared to untreated clones. At the blastocyst stage, the aberrant expression levels of key developmental genes Oct4 and Cdx2, but not Nanog, were corrected in cloned embryos by the treatment with RG108. This is similar to the intensity levels seen in fertilized embryos. The expression of Rpl7l1 gene was significantly higher in embryos treated with both RG108 and SAHA than in untreated and in control groups. In summary, the present study showed that SAHA and RG108, when applied separately, improve the rate and quality of cloned mouse embryos.
Collapse
Affiliation(s)
- Maryam Zarei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Boshra Shamaghdari
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zeinab Vahabi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
11
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
12
|
Meng L, Hu H, Liu Z, Zhang L, Zhuan Q, Li X, Fu X, Zhu S, Hou Y. The Role of Ca 2 + in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front Cell Dev Biol 2021; 9:746237. [PMID: 34765601 PMCID: PMC8577575 DOI: 10.3389/fcell.2021.746237] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.
Collapse
Affiliation(s)
- Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongmei Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Hossein MS, Yu X, Son YB, Jeong YI, Jeong YW, Choi EJ, Tinson AH, Singh KK, Singh R, Noura AS, Hwang WS. The Resurrection of Mabrokan: Production of Multiple Cloned Offspring from Decade-Old Vitrified Tissue Collected from a Deceased Champion Show Camel. Animals (Basel) 2021; 11:ani11092691. [PMID: 34573657 PMCID: PMC8469105 DOI: 10.3390/ani11092691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) provides a unique opportunity to reproduce animals with superior genetics. Viable cell lines are usually established from tissues collected by biopsy from living animals in the SCNT program. In the present study, tissues were collected and preserved from a suddenly deceased champion camel. We established cell lines from these decade-old tissues and used them as nuclear donors. After 42 h of in vitro maturation, 68.00 ± 2.40% of oocytes reached the metaphase II (M II) stage while 87.31 ± 2.57% in vivo collected oocytes were matured at collection (p < 0.05). We observed a higher blastocyst formation rate when in vivo matured oocytes (43.45 ± 2.07%) were used compared to in vitro matured oocytes (21.52 ± 1.74%). The live birth rate was 6.45% vs. 16.67% for in vitro and in vivo matured oocytes, respectively. Microsatellite analysis of 13 camel loci revealed that all the SCNT-derived offspring were identical to each other and with their somatic cell donor. The present study succeeded in the resurrection of 11 healthy offspring from the decade-old vitrified tissues of a single somatic cell donor individual using both in vitro and in vivo matured oocytes.
Collapse
Affiliation(s)
- Mohammad Shamim Hossein
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Xianfeng Yu
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Young-Bum Son
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Yeon-Ik Jeong
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Yeon-Woo Jeong
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Eun-Ji Choi
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
| | - Alex H. Tinson
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Kuhad Kuldip Singh
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Rajesh Singh
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Al Shamsi Noura
- Hilli E.T. Cloning and Surgical Centre, Presidential Camels and Camel Racing Affairs, Al-Ain 17292, United Arab Emirates; (A.H.T.); (K.K.S.); (R.S.); (A.S.N.)
| | - Woo-Suk Hwang
- UAE Biotech Research Center, Al Wathba South, Abu Dhabi 30310, United Arab Emirates; (M.S.H.); (X.Y.); (Y.-B.S.); (Y.-I.J.); (Y.-W.J.); (E.-J.C.)
- Correspondence:
| |
Collapse
|
14
|
Long C, Li H, Li X, Yang W, Zuo Y. Nuclear Transfer Arrest Embryos Show Massive Dysregulation of Genes Involved in Transcription Pathways. Int J Mol Sci 2021; 22:ijms22158187. [PMID: 34360962 PMCID: PMC8347363 DOI: 10.3390/ijms22158187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) technology can reprogram terminally differentiated cell nuclei into a totipotent state. However, the underlying molecular barriers of SCNT embryo development remain incompletely elucidated. Here, we observed that transcription-related pathways were incompletely activated in nuclear transfer arrest (NTA) embryos compared to normal SCNT embryos and in vivo fertilized (WT) embryos, which hinders the development of SCNT embryos. We further revealed the transcription pathway associated gene regulatory networks (GRNs) and found the aberrant transcription pathways can lead to the massive dysregulation of genes in NTA embryos. The predicted target genes of transcription pathways contain a series of crucial factors in WT embryos, which play an important role in catabolic process, pluripotency regulation, epigenetic modification and signal transduction. In NTA embryos, however, these genes were varying degrees of inhibition and show a defect in synergy. Overall, our research found that the incomplete activation of transcription pathways is another potential molecular barrier for SCNT embryos besides the incomplete reprogramming of epigenetic modifications, broadening the understanding of molecular mechanism of SCNT embryonic development.
Collapse
|