1
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|