1
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
2
|
In Silico and In Vitro Studies on the Mechanisms of Chinese Medicine Formula (Yiqi Jianpi Jiedu Formula) in the Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8669993. [PMID: 36345477 PMCID: PMC9637043 DOI: 10.1155/2022/8669993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
Objective Traditional Chinese medicine (TCM) is an important part of the comprehensive treatment of hepatocellular carcinoma (HCC), and Chinese materia medica formulas with the effect of “Yiqi Jianpi” (replenishing qi and strengthening spleen) or “Jiedu” (removing toxicity) have been proved to be effective in treating HCC. However, mechanisms of these formulas in treating HCC remain unclear. In this paper, our goal is to explore the antitumor activity and its molecular mechanisms of Yiqi Jianpi Jiedu (YQJPJD) formula against HCC. Methods The bioactive ingredients and targets of YQJPJD formula and HCC targets were screened by five Chinese materia medicas and two disease databases, respectively. The network pharmacology was utilized to construct the relationship network between YQJPJD formula and HCC, and the mechanisms were predicted by the protein-protein interaction (PPI) network, pathway enrichment analysis, bioinformatics, and molecular docking. Numerous in vitro assays were performed to verify the effect of YQJPJD formula on HCC cells, cancer-associated targets, and PI3K/Akt pathway. Results The network relationship between YQJPJD formula and HCC suggested that YQJPJD formula mainly regulated the potential therapeutic targets of HCC by several key bioactive ingredients (e.g., quercetin, luteolin, baicalein, and wogonin). PPI network, bioinformatics, and molecular docking analyses displayed that YQJPJD formula may play an anti-HCC effect through key targets such as MAPK3, RAC1, and RHOA. Additionally, pathway analysis demonstrated that YQJPJD formula could play an anti-HCC effect via multiple pathways (e.g., PI3K-Akt and hepatitis B). Experimental results showed that YQJPJD formula could effectively inhibit the proliferation, migration, and invasion of HCC cells and promote HCC cell apoptosis in a concentration-dependent manner. Moreover, YQJPJD formula could decrease the mRNA expression of β-catenin, MAPK3, and RHOA and the protein expression of phosphorylated PI3K and Akt. Conclusion YQJPJD formula mainly exerts its anti-HCC effect through multiple bioactive ingredients represented by quercetin, as well as multiple pathways and targets represented by PI3K/Akt pathway, β-catenin, MAPK3, and RHOA.
Collapse
|
3
|
Zhang B, Bi Q, Huang S, Lv S, Zong X, Wang M, Ji X. Baoyuan Jiedu decoction alleviating cancer cachexia–Induced muscle atrophy by regulating muscle mitochondrial function in ApcMin/+ mice. Front Pharmacol 2022; 13:914597. [PMID: 36060011 PMCID: PMC9437209 DOI: 10.3389/fphar.2022.914597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cachexia is a complex syndrome that leads to an ongoing loss of skeletal muscle mass in many malignant tumors. Our previous studies have evaluated the effectiveness of Baoyuan Jiedu decoction (BJD) in alleviating cancer-induced muscle atrophy. However, the mechanisms of BJD regulating muscle atrophy could not be fully understood. Therefore, we further investigated the mechanisms of BJD mitigating muscle atrophy both in an ApcMin/+ mouse model and the Lewis-conditioned medium–induced C2C12 myotube atrophy model. We confirmed the quality of BJD extracts by HPLC. In an In vivo study, body weight loss and muscle atrophy were alleviated with BJD treatment. GO analysis suggested that ATP metabolism and mitochondria were involved. The results of the electron microscope show that BJD treatment may have a healing effect on mitochondrial structure. Moreover, ATP content and mitochondrial numbers were improved with BJD treatment. Furthermore, both in vivo and in vitro, we demonstrated that the BJD treatment could improve mitochondrial function owing to the increased number of mitochondria, balanced dynamic, and regulation of the electron transport chain according to the protein and mRNA expressions. In addition, oxidative stress caused by mitochondrial dysfunction was ameliorated by BJD treatment in ApcMin/+ mice. Consequently, our study provides proof for BJD treatment alleviating cancer cachexia–induced muscle atrophy by modulating mitochondrial function in ApcMin/+ mice.
Collapse
Affiliation(s)
- Beiying Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Bi
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengqi Huang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zong
- Weifang Nursing Vocational College, Weifang, China
| | - Mengran Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuming Ji,
| |
Collapse
|
4
|
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: Current status and future perspectives. Semin Cancer Biol 2022; 86:678-696. [PMID: 35452820 DOI: 10.1016/j.semcancer.2022.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/β-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential sytem that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow 109316, Russian Federation
| |
Collapse
|
5
|
Kang L, Miao MS, Song YG, Fang XY, Zhang J, Zhang YN, Miao JX. Total flavonoids of Taraxacum mongolicum inhibit non-small cell lung cancer by regulating immune function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114514. [PMID: 34384846 DOI: 10.1016/j.jep.2021.114514] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum mongolicum Hand.-Mazz. has been used in lung cancer treatment in Chinese medicine. However, its specific mechanism of action has not yet been reported, and developing pharmaceutical anti-cancer resources is important. Here, we aimed to elucidate the anti-tumor effects of dandelion in vitro and in vivo and assess its effects on immune function in lung cancer patients. AIM OF THE STUDY In the present study, we mainly observed the therapeutic effects of total flavonoids from Taraxacum mongolicum Hand.-Mazz. (TFTM) on non-small cell lung cancer and its influence on the body's immune function. MATERIALS AND METHODS In vitro experiments on A549 and H1299 cells were performed using the CCK8 method; the proliferation and migration of cells were observed to investigate the wound healing effects of TFTM, and flow cytometry was used to detect the apoptotic rate of TFTM on lung cancer cells. In vivo experiments were preformed to establish a non-small cell lung cancer mouse model using subcutaneously transplanted Lewis cells, and the body weight and tumor growth of the mice were recorded. Hematoxylin and eosin staining was performed for tumor tissue to assess pathological changes. The thymus, spleen, and lungs were isolated for to calculate organ index. The CD4+, CD8+, and CD4+/CD8+ levels were detected in mouse spleen using flow cytometry, and IL-2, IL-3, IFN-γ, and TNF-α levels were determined in serum using enzyme-linked immunosorbent assay. Expressions of IL-2, IL-3, IFN-γ, and TNF-α were detected using quantitative real-time PCR in tumor tissues, and Ki67 expression was observed by immunofluorescence. RESULTS At 24 h, TFTM (100 and 200 μg/mL) had the best inhibitory effect on the proliferation of A549 and H1299 cells. The cell migration rate significantly reduced (P < 0.01), and the tumor inhibition rate increased (P < 0.01) and promoted apoptosis (P < 0.01). The mouse thymus index significantly increased (P < 0.05) and mouse spleen index reduced (P < 0.05). The CD4+, CD8+, and CD4+/CD8+ levels in Lewis lung cancer mouse model increased, as did the levels of IL-2, IL-3, IFN-γ, and TNF-α in the serum and tumor of mice; Ki67 expression in tumor tissues significantly reduced (P < 0.01). CONCLUSION TFTM has an inhibitory effect on lung cancer. The mechanism may be that it improves the host's protective immune response by having a milder tumor growth inhibitory effect than cyclophosphamide.
Collapse
Affiliation(s)
- Le Kang
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ming-San Miao
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ya-Gang Song
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiao-Yan Fang
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jin Zhang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ya-Nan Zhang
- National International Cooperation Base of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jin-Xin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Xu Y, Yu X, Zhang M, Zheng Q, Sun Z, He Y, Guo W. Promising Advances in LINC01116 Related to Cancer. Front Cell Dev Biol 2021; 9:736927. [PMID: 34722518 PMCID: PMC8553226 DOI: 10.3389/fcell.2021.736927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with a length of no less than 200 nucleotides that are not translated into proteins. Accumulating evidence indicates that lncRNAs are pivotal regulators of biological processes in several diseases, particularly in several malignant tumors. Long intergenic non-protein coding RNA 1116 (LINC01116) is a lncRNA, whose aberrant expression is correlated with a variety of cancers, including lung cancer, gastric cancer, colorectal cancer, glioma, and osteosarcoma. LINC01116 plays a crucial role in facilitating cell proliferation, invasion, migration, and apoptosis. In addition, numerous studies have recently suggested that LINC01116 has emerged as a novel biomarker for prognosis and therapy in malignant tumors. Consequently, we summarize the clinical significance of LINC01116 associated with biological processes in various tumors and provide a hopeful orientation to guide clinical treatment of various cancers in future studies.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|