1
|
Ren L, Zhao Y, Ji X, Li W, Jiang W, Li Q, Zhu L, Luo Y. The therapeutic effect of Picroside II in renal ischemia-reperfusion induced acute kidney injury: An experimental study. Eur J Pharmacol 2024; 967:176391. [PMID: 38325794 DOI: 10.1016/j.ejphar.2024.176391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The microcirculation hemodynamics change and inflammatory response are the two main pathophysiological mechanisms of renal ischemia-reperfusion injury (IRI) induced acute kidney injury (AKI). The treatment of microcirculation hemodynamics and inflammatory response can effectively alleviate renal injury and correct renal function. Picroside II (P II) has a wide range of pharmacological effects. Still, there are few studies on protecting IRI-AKI, and whether P II can improve renal microcirculation perfusion is still being determined. This study aims to explore the protective effect of P II on IRI-AKI and evaluate its ability to enhance renal microcirculation perfusion. In this study, a bilateral renal IRI-AKI model in mice was established, and the changes in renal microcirculation and inflammatory response were quantitatively evaluated before and after P II intervention by contrast-enhanced ultrasound (CEUS). At the same time, serum and tissue markers were measured to assess the changes in renal function. The results showed that after P II intervention, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC), and the normalized intensity difference (NID) were all alleviated. In conclusion, P II can improve renal microcirculation perfusion changes caused by IRI-AKI, reduce inflammatory reactions during AKI, and enhance renal antioxidant stress capacity. P II may be a new and promising drug for treating IRI-AKI.
Collapse
Affiliation(s)
- Ling Ren
- The Second Medical College of Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730030, China; Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China; Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yuzhuo Zhao
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xianpu Ji
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Wenqing Li
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Wenli Jiang
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiuyang Li
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lianhua Zhu
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yukun Luo
- The Second Medical College of Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, Gansu, 730030, China; Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Anghelache M, Voicu G, Deleanu M, Turtoi M, Safciuc F, Anton R, Boteanu D, Fenyo IM, Manduteanu I, Simionescu M, Calin M. Biomimetic Nanocarriers of Pro-Resolving Lipid Mediators for Resolution of Inflammation in Atherosclerosis. Adv Healthc Mater 2024; 13:e2302238. [PMID: 37852632 PMCID: PMC11469162 DOI: 10.1002/adhm.202302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Atherosclerosis (ATH) is a systemic disease characterized by a chronic inflammatory process and lipid deposition in the arterial walls. The chronic inflammation within ATH lesions results, at least in part, from the failed resolution of inflammation. This process is controlled actively by specialized pro-resolving lipid mediators (SPMs), namely lipoxins, resolvins, protectins, and maresins. Herein, biomimetic nanocarriers are produced comprising a cocktail of SPMs-loaded lipid nanoemulsions (LN) covered with macrophage membranes (Bio-LN/SPMs). Bio-LN/SPMs retain on their surface the macrophage receptors involved in cellular interactions and the "marker of self" CD47, which impede their recognition and uptake by other macrophages. The binding of Bio-LN/SPMs to the surface of endothelial cells (EC) and smooth muscle cells (SMC) is facilitated by the receptors on the macrophage membranes and partly by SPMs receptors. In addition, Bio-LN/SPMs prove functional by reducing monocyte adhesion and transmigration to/through activated EC and by stimulating macrophage phagocytic activity. After intravenous administration, Bio-LN/SPMs accumulate in the aorta of ApoE-deficient mice at the level of atherosclerotic lesions. Also, the safety assessment testing reveals no side effects or immunotoxicity of Bio-LN/SPMs. Thus, the newly developed Bio-LN/SPMs represent a reliable targeted nanomedicine for the resolution of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Maria Anghelache
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Geanina Voicu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mariana Deleanu
- Liquid and Gas Chromatography LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mihaela Turtoi
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Florentina Safciuc
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ruxandra Anton
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Delia Boteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ioana Madalina Fenyo
- Gene Regulation and Molecular Therapies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ileana Manduteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Maya Simionescu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Manuela Calin
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| |
Collapse
|
3
|
Manea SA, Vlad ML, Lazar AG, Muresian H, Simionescu M, Manea A. Pharmacological Inhibition of Lysine-Specific Demethylase 1A Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice by a Mechanism Involving Decreased Oxidative Stress and Inflammation; Potential Implications in Human Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122382. [PMID: 36552592 PMCID: PMC9774905 DOI: 10.3390/antiox11122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Dysregulated epigenetic mechanisms promote transcriptomic and phenotypic alterations in cardiovascular diseases. The role of histone methylation-related pathways in atherosclerosis is largely unknown. We hypothesize that lysine-specific demethylase 1A (LSD1/KDM1A) regulates key molecular effectors and pathways linked to atherosclerotic plaque formation. Human non-atherosclerotic and atherosclerotic tissue specimens, ApoE-/- mice, and in vitro polarized macrophages (Mac) were examined. Male ApoE-/- mice fed a normal/atherogenic diet were randomized to receive GSK2879552, a highly specific LSD1 inhibitor, or its vehicle, for 4 weeks. The mRNA and protein expression levels of LSD1/KDM1A were significantly elevated in atherosclerotic human carotid arteries, atherosclerotic aortas of ApoE-/- mice, and M1-Mac. Treatment of ApoE-/- mice with GSK2879552 significantly reduced the extent of atherosclerotic lesions and the aortic expression of NADPH oxidase subunits (Nox1/2/4, p22phox) and 4-hydroxynonenal-protein adducts. Concomitantly, the markers of immune cell infiltration and vascular inflammation were significantly decreased. LSD1 blockade down-regulated the expression of genes associated with Mac pro-inflammatory phenotype. Nox subunit transcript levels were significantly elevated in HEK293 reporter cells overexpressing LSD1. In experimental atherosclerosis, LSD1 mediates the up-regulation of molecular effectors connected to oxidative stress and inflammation. Together, these data indicate that LSD1-pharmacological interventions are novel targets for supportive therapeutic strategies in atherosclerosis.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandra-Gela Lazar
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Horia Muresian
- Cardiovascular Surgery Department, University Hospital Bucharest, 050098 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
- Correspondence:
| |
Collapse
|
4
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022; 61:14487-14499. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.
Collapse
Affiliation(s)
- Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
6
|
Huang C, Huang W, Zhang L, Zhang C, Zhou C, Wei W, Li Y, Zhou Q, Chen W, Tang Y. Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics 2022; 14:pharmaceutics14051083. [PMID: 35631669 PMCID: PMC9146689 DOI: 10.3390/pharmaceutics14051083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lifen Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA;
| | - Wei Wei
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Yongsheng Li
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Correspondence: (Q.Z.); (Y.T.)
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
- Correspondence: (Q.Z.); (Y.T.)
| |
Collapse
|
7
|
Peng X, Lv Y, Fu L, Chen F, Su W, Li J, Zhang Q, Zhao S. Photoluminescence properties of cuprous phosphide prepared through phosphating copper with a native oxide layer. RSC Adv 2021; 11:34095-34100. [PMID: 35497268 PMCID: PMC9042379 DOI: 10.1039/d1ra07112b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although cuprous phosphide (Cu3P) has been widely studied and applied in other fields, its photoluminescence (PL) properties are rarely investigated. Herein, we report that Cu3P can emit near-infrared light at 750 nm. We show that the annealing and the presence of cuprous oxide can enhance the PL emission. The mechanism of the PL enhancement is the improvement of crystal quality and the formation of a space charge region. Our results provide a reference for improving the PL properties of p-type semiconductors.
Collapse
Affiliation(s)
- Xue Peng
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Yanfei Lv
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Li Fu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Fei Chen
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Weitao Su
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
| | - Qi Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| | - Shichao Zhao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 P. R. China
| |
Collapse
|
8
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
9
|
Wang Q, Lou R, Yin Q, Yang R, Li S, Zhou J. A nano-detection system based on a chemical probe for early diagnosis of atherosclerosis in situ. Analyst 2021; 146:4674-4682. [PMID: 34190228 DOI: 10.1039/d1an00484k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the existing medical diagnostic technology, the diagnosis of atherosclerosis (AS) is mainly focused on the later stage of AS development rather than plaque imaging in the period before plaque formation. It is impractical to apply the existing theoretical methods for the purpose of early detection of AS. Herein, this study uses a naphthalimide-based fluorescent probe for recognition of cellular reactive oxygen species (ROS). A platelet membrane (Mp) with foam cell targeting was wrapped around the probes to prepare two vesicle structures TBNG@Mp and GNTB@Mp. The animal experiment results show that the screened nano-detection system TBNG@Mp could accumulate in the thoracic aorta of early AS rats. Under the effect of intracellular ROS, fluorescence signals can be observed. In addition, acute biological toxicity was not observed in pathological sections. Therefore, the foam cell targeting system TBNG@Mp with acceptable biocompatibility can realize the detection of AS one to two decades in advance as well as has a good application prospect.
Collapse
Affiliation(s)
- Qiaolei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Rui Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qianwen Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Ruhe Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shengnan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|