1
|
Yu S, Huang L, Ren J, Zhang X. Association of polymorphisms in FBN1, MYH11, and TGF-β signaling-related genes with susceptibility of sporadic thoracic aortic aneurysm and dissection in the Zhejiang Han population. Open Med (Wars) 2024; 19:20241025. [PMID: 39291280 PMCID: PMC11406435 DOI: 10.1515/med-2024-1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Background Sporadic thoracic aortic aneurysm and dissection (sTAAD) is a complicated vascular disease with a high mortality rate. And its genetic basis has not been fully explored. Method Here, 122 sTAAD patients and 98 healthy individuals were recruited, and 10 single nucleotide polymorphisms were selected and analyzed (FBN1 rs10519177, rs1036477, rs2118181, MYH11 rs115364997, rs117593370, TGFβ1 rs1800469, TGFβ2 rs900, TGFβR2 rs764522, rs1036095, and rs6785385). Moreover, multiple logistic regression analysis was used to evaluate gene-environment interactions. Results We identified that TGFβR2 rs1036095 dominant model CC + CG genotype (GT) (P = 0.004) may be a factor of increased risk of sTAAD, especially for women. FBN1 rs1036477 recessive model AA GT (P = 0.009) and FBN1 rs2118181 dominant model CC + CT GT (P = 0.009) were correlated to an increased death rate in sTAAD men patients. Gene-environment interactions indicated TGFβR2 rs1036095 dominant model (CC + CG)/GG to be a higher-risk factor for sTAAD (odds ratio = 3.255; 95% confidence interval: 1.324-8.000, P = 0.01). Conclusions TGFβR2 rs1036095, FBN1 rs1036477, and FBN1 rs2118181 were identified as factors of increased risk of sTAAD. Gene-environment interactions were associated with the risk of sTAAD.
Collapse
Affiliation(s)
- Shasha Yu
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Lujie Huang
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Jianfei Ren
- Ningbo Medical Center Lihuili Hospital, Zhejiang, China
| | - Xiaoying Zhang
- Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Zhejiang, China
| |
Collapse
|
2
|
Tao Y, Li G, Wang Z, Wang S, Peng X, Tang G, Li X, Liu J, Yu T, Fu X. MiR-1909-5p targeting GPX4 affects the progression of aortic dissection by modulating nicotine-induced ferroptosis. Food Chem Toxicol 2024; 191:114826. [PMID: 38897284 DOI: 10.1016/j.fct.2024.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Aortic dissection (AD) is a prevalent and acute clinical catastrophe characterized by abrupt manifestation, swift progression, and elevated fatality rates. Despite smoking being a significant risk factor for AD, the precise pathological process remains elusive. This investigation endeavors to explore the mechanisms by which smoking accelerates AD through ferroptosis induction. METHODOLOGY In this novel study, we detected considerable endothelial cell death by ferroptosis within the aortic inner lining of both human AD patients with a smoking history and murine AD models induced by β-aminopropionitrile, angiotensin II, and nicotine. Utilizing bioinformatic approaches, we identified microRNAs regulating the expression of the ferroptosis inhibitor Glutathione peroxidase 4 (GPX4). Nicotine's impact on ferroptosis was further assessed in human umbilical vein endothelial cells (HUVECs) through modulation of miR-1909-5p. Additionally, the therapeutic potential of miR-1909-5p antagomir was evaluated in vivo in nicotine-exposed AD mice. FINDINGS Our results indicate a predominance of ferroptosis over apoptosis, pyroptosis, and necroptosis in the aortas of AD patients who smoke. Nicotine exposure instigated ferroptosis in HUVECs, where the miR-1909-5p/GPX4 axis was implicated. Modulation of miR-1909-5p in these cells revealed its regulatory role over GPX4 levels and subsequent endothelial ferroptosis. In vivo, miR-1909-5p suppression reduced ferroptosis and mitigated AD progression in the murine model. CONCLUSIONS Our data underscore the involvement of the miR-1909-5p/GPX4 axis in the pathogenesis of nicotine-induced endothelial ferroptosis in AD.
Collapse
Affiliation(s)
- Yan Tao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Shizhong Wang
- The Department of Cardiology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xingang Peng
- The Department of Emergency General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jianhua Liu
- Ultrasound Medicine Department, Guangzhou First People's Hospital, Guangzhou, 510000, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
3
|
Song W, Tu G, Qin L, Wei L, Chen J. Macrophage in Sporadic Thoracic Aortic Aneurysm and Dissection: Potential Therapeutic and Preventing Target. Rev Cardiovasc Med 2023; 24:340. [PMID: 39077089 PMCID: PMC11272886 DOI: 10.31083/j.rcm2412340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 07/31/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular disorder lacking effective clinical pharmacological therapies. The underlying molecular mechanisms of TAAD still remain elusive with participation of versatile cell types and components including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, immune cells, and the extracellular matrix (ECM). The main pathological features of TAAD include SMC dysfunction, phenotypic switching, and ECM degradation, which is closely associated with inflammation and immune cell infiltration. Among various types of immune cells, macrophages are a distinct participator in the formation and progression of TAAD. In this review, we first highlight the important role of inflammation and immune cell infiltration in TAAD. Furthermore, we discuss the role of macrophages in TAAD from the aspects of macrophage origination, classification, and functions. On the basis of experimental and clinical studies, we summarize key regulators of macrophages in TAAD. Finally, we review how targeting macrophages can reduce TAAD in murine models. A better understanding of the molecular and cellular mechanisms of TAAD may provide novel insights into preventing and treating the condition.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Lieyang Qin
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Lai Wei
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jinmiao Chen
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| |
Collapse
|
4
|
Li M, Li G, Yang Y, Zong J, Fu X, Htet ALH, Li X, Li T, Wang J, Yu T. piRNA-823 is a novel potential therapeutic target in aortic dissection. Pharmacol Res 2023; 196:106932. [PMID: 37739144 DOI: 10.1016/j.phrs.2023.106932] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Aortic dissection (AD) presents a medical challenge for clinicians. Here, to determine the role of a novel small non-coding piRNA-823 (piR-823) in AD, murine and human aorta from patients with AD were used. A high expression levels of piR-823 were found in patients with AD. Using performed loss- and gain-of-function assays in vitro and in vivo, we explore the regulatory effect of piR-823 on vascular smooth muscle cells (VSMCs) and AD. piR-823 obviously facilitates the proliferation, migration, and phenotypic transformation of VSMCs with or without nicotine treatment. piR-823 directly binds and suppresses histone deacetylase 1 (HDAC1) expression, and regulates the acetylation of histone 3 (H3) via H3K9ac and H3K27ac, eventually, VSMC functions and AD. To consolidate our findings, AD murine model was performed, and we observed that piR-823 antagomir strongly inhibited the pathogenesis of AD through regulating vascular remodeling. Thus, our study finds a potential target for the prevention and treatment strategy for nicotine-induced AD.
Collapse
Affiliation(s)
- Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Aung Lynn Htet Htet
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China.
| |
Collapse
|
5
|
Right Heart Failure as an Atypical Presentation of Chronic Type A Aortic Dissection - Multimodality Imaging for Accurate Diagnosis and Treatment. A case report and mini-review of literature. J Crit Care Med (Targu Mures) 2022; 8:204-213. [PMID: 36062037 PMCID: PMC9396954 DOI: 10.2478/jccm-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background An intrapericardial organized haematoma secondary to chronic type A aortic dissection is an extremely rare cause of right heart failure. Imaging studies are essential in recognising and diagnosis of this distinctive medical condition and guiding the anticipated treatment. Case presentation A 70-year-old male patient was admitted for progressive symptoms of right heart failure. His cardiovascular history exposed an aortic valve replacement 22 years before with a Medtronic Hall 23 tilting valve with no regular follow-up. Classical signs of congestion were recognized at physical examination. Transthoracic two-dimensional echocardiography and thoraco-abdominal computed tomography angiography, as essential parts of multimodality imaging algorithm, established the underlying cause of right heart failure. Under total cardiopulmonary bypass and cardiac arrest, surgical removal of the haematoma and proximal repair of the ascending aorta with a patient-matched vascular graft were successfully performed. The patient was discharged in good condition with appropriate pharmacological treatment, guideline-directed; no imagistic signs of acute post-surgery complications were ascertained. Conclusion This paper highlights the importance of recognizing and providing a timely clinical and imagistic diagnosis of this very rare, potentially avoidable cause of right heart failure in patients with previous cardiac surgery.
Collapse
|
6
|
Temporal and Quantitative Analysis of Aortic Immunopathologies in Elastase-Induced Mouse Abdominal Aortic Aneurysms. J Immunol Res 2021; 2021:6297332. [PMID: 34825008 PMCID: PMC8610647 DOI: 10.1155/2021/6297332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Elastase-induced abdominal aortic aneurysm (AAA) model is widely used for aneurysmal pathogenesis and translational research. However, temporal alternations in aneurysmal histologies remain unknown. This study is aimed at analyzing temporal immunopathologies of aneurysmal aorta following experimental AAA induction. Methods Male C57BL/6J mice at the age of 10-14 weeks received intra-aortic infusion of elastase to induce AAAs. Aortic diameters at the baseline and indicated days after AAA induction were measured, and aortae were collected for histopathological analysis. Results Aorta diameters increased from 0.52 mm at the baseline levels to 0.99 mm, 1.34 mm, and 1.41 mm at days 7, 14, and 28, respectively, corresponding 90%, 158%, and 171% increases over the baseline level. Average aortic diameters did not differ between days 14 and 28. Severe elastin degradation and smooth muscle cell depletion were found at days 14 and 28 as compared to the baseline and day 7. No difference in the scores of medial elastin and SMC destruction was noted between days 14 and 28. Consistent results were found for leukocyte accumulation, neoangiogenesis, and matrix metalloproteinase expression. Twenty-eight days after AAA induction, all aneurysmal pathologies showed an attenuated trend, although most histopathological parameters did no differ between days 14 and 28. Conclusion Our data suggest that almost aneurysmal immunohistopathologies reach maximal 14 days following AAA induction. Analysis of day 14 histologies is sufficient for AAA pathogenesis and translational studies in elastase-induced mouse experimental AAAs.
Collapse
|