1
|
Huang Y, Zhang K, Wang X, Guo K, Li X, Chen F, Du R, Li S, Li L, Yang Z, Zhuo D, Wang B, Wang W, Hu Y, Jiang M, Fan G. Multi-omics approach for identification of molecular alterations of QiShenYiQi dripping pills in heart failure with preserved ejection fraction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116673. [PMID: 37268257 DOI: 10.1016/j.jep.2023.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine theory believes that qi deficiency and blood stasis are the key pathogenesis of heart failure with preserved ejection fraction (HFpEF). As a representative prescription for replenishing qi and activating blood, QiShenYiQi dripping pills (QSYQ) has been used for treating heart diseases. However, the pharmacological mechanism of QSYQ in improving HFpEF is not well understood. AIM OF THE STUDY The objective of the study is to investigate the cardioprotective effect and mechanism of QSYQ in HFpEF using the phenotypic dataset of HFpEF. MATERIALS AND METHODS HFpEF mouse models established by feeding mice combined high-fat diet and Nω-nitro-L-arginine methyl ester drinking water were treated with QSYQ. To reveal causal genes, we performed a multi-omics study, including integrative analysis of transcriptomics, proteomics, and metabolomics data. Moreover, adeno-associated virus (AAV)-based PKG inhibition confirmed that QSYQ mediated myocardial remodeling through PKG. RESULTS Computational systems pharmacological analysis based on human transcriptome data for HFpEF showed that QSYQ could potentially treat HFpEF through multiple signaling pathways. Subsequently, integrative analysis of transcriptome and proteome showed alterations in gene expression in HFpEF. QSYQ regulated genes involved in inflammation, energy metabolism, myocardial hypertrophy, myocardial fibrosis, and cGMP-PKG signaling pathway, confirming its function in the pathogenesis of HFpEF. Metabolomics analysis revealed fatty acid metabolism as the main mechanism by which QSYQ regulates HFpEF myocardial energy metabolism. Importantly, we found that the myocardial protective effect of QSYQ on HFpEF mice was attenuated after RNA interference-mediated knock-down of myocardial PKG. CONCLUSION This study provides mechanistic insights into the pathogenesis of HFpEF and molecular mechanisms of QSYQ in HFpEF. We also identified the regulatory role of PKG in myocardial stiffness, making it an ideal therapeutic target for myocardial remodeling.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Xiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kaimin Guo
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Xiaoqiang Li
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bingkai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenjia Wang
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd, Shenzhen, 518000, China.
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China.
| |
Collapse
|
2
|
Hu XZ, Zhou M, Weng JH. Eight Trigrams Boxing Combined with Wenyang Huoxue Recipe Improves Cardiopulmonary Motor Function and the Quality of Life of Patients with Coronary Heart Disease. Int J Gen Med 2021; 14:7557-7566. [PMID: 34754228 PMCID: PMC8572042 DOI: 10.2147/ijgm.s318269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the therapeutic effects of Eight Trigrams Boxing combined with a Wenyang Huoxue recipe on the cardiopulmonary motor function and quality of life in patients with coronary heart disease after an interventional operation (percutaneous coronary intervention [PCI]); further, to provide new clinical evidence and ideas for integrated traditional Chinese and Western medicine in cardiac rehabilitation. Methods Sixty patients were selected and successfully underwent PCI in designated hospitals after four weeks, from June 2018 to September 2020. The patients were randomly divided into a treatment group and control group, and both groups were given standard pharmaceuticals after PCI and the Wenyang Huoxue recipe. The treatment group was additionally treated with the Eight Trigrams Boxing Method. The control group was provided with aerobic rehabilitation exercise. The maximum oxygen uptake (VO2max), metabolic equivalent (MET), the results of a 6-min walking test, the Seattle Angina Questionnaire (SAQ) score, SF-36 score, and other indicators were evaluated before and after treatment. The therapeutic effect was evaluated by comparison between the groups and within the groups. Results The VO2max, MET, 6-min walking distance, SAQ score, and SF-36 score in both groups improved after treatment compared with before treatment. There was no difference between the two groups before treatment. However, after treatment, the VO2max, MET, 6 min walking distance, SAQ score, and SF-36 score in the treatment group were higher compared with the control group. Conclusion A traditional Chinese medicine cardiac rehabilitation program of Eight Trigrams Boxing combined with a Wenyang Huoxue recipe can improve the cardiopulmonary function and quality of life of patients. The therapeutic effect was clear and is worthy of further investigation.
Collapse
Affiliation(s)
- Xiao-Zhen Hu
- Department of Internal Medicine-Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Miao Zhou
- Department of Internal Medicine-Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jia-Hao Weng
- Department of Internal Medicine-Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|