1
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
2
|
Caban M, Lewandowska U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules 2023; 28:molecules28104189. [PMID: 37241929 DOI: 10.3390/molecules28104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are difficult to cure, and available treatment is associated with troubling side effects. In addition, current therapies have limited efficacy and are characterized by high costs, and a large segment of the IBD and CRC patients are refractive to the treatment. Moreover, presently used anti-IBD therapies in the clinics are primarily aimed on the symptomatic control. That is why new agents with therapeutic potential against IBD and CRC are required. Currently, polyphenols have received great attention in the pharmaceutical industry and in medicine due to their health-promoting properties. They may exert anti-inflammatory, anti-oxidative, and anti-cancer activity, via inhibiting production of pro-inflammatory cytokines and enzymes or factors associated with carcinogenesis (e.g., matrix metalloproteinases, vascular endothelial growth factor), suggesting they may have therapeutic potential against IBD and CRC. However, their use is limited under both processing conditions or gastrointestinal interactions, reducing their stability and hence their bioaccessibility and bioavailability. Therefore, there is a need for more effective carriers that could be used for encapsulation of polyphenolic compounds. In recent years, natural polysaccharides have been proposed for creating carriers used in the synthesis of polyphenol encapsulates. Among these, hemicelluloses are particularly noteworthy, being characterized by good biocompatibility, biodegradation, low immunogenicity, and pro-health activity. They may also demonstrate synergy with the polyphenol payload. This review discusses the utility and potential of hemicellulose-based encapsulations of polyphenols as support for treatment of IBD and CRC.
Collapse
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Kashef SM, Yassien RI, El-Ghazouly DES. The possible effect of lycopene in ameliorating experimentally induced ulcerative colitis in adult male albino rats (A histological, immunohistochemical, and ultrastructural study). Ultrastruct Pathol 2023; 47:172-187. [PMID: 36869024 DOI: 10.1080/01913123.2023.2185718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Ulcerative colitis (UC) is considered a long-term inflammatory disorder worldwide. Its pathogenesis is associated with reduced antioxidant capacity. Lycopene (LYC) is a powerful antioxidant with strong free radical scavenging property. The present work has done to assess changes of colonic mucosa in induced UC and the possible ameliorative effects of LYC. Forty-five adult male albino rats were randomly divided into four groups: group I (control), group II was given 5 mg/kg/day (LYC) by oral gavage for 3 weeks. Group III (UC) was received single intra-rectal injection of acetic acid. Group IV (LYC+UC) received LYC in same dose and duration as before and acetic acid on 14th day of the experiment. UC group showed loss of surface epithelium with destructed crypts. Congested blood vessels with heavy cellular infiltration were observed. Significant decrease in goblet cell numbers and the mean area percentage of ZO-1 immunoexpression were noticed. Significant increase in the mean area percentage of collagen and the mean area percentage of COX-2 were also noticed. Ultrastructural changes were matched with light microscopic results that showed abnormal destructive columnar and goblet cells. Histological, immunohistochemical, and ultrastructural findings in group IV supported the ameliorative role of LYC against destructive changes induced by UC.
Collapse
|
4
|
Laurindo LF, de Carvalho GM, de Oliveira Zanuso B, Figueira ME, Direito R, de Alvares Goulart R, Buglio DS, Barbalho SM. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15010229. [PMID: 36678859 PMCID: PMC9861982 DOI: 10.3390/pharmaceutics15010229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR's numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR's solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Daiene Santos Buglio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
- Correspondence: ; Tel.: +55-14-99655-3190
| |
Collapse
|
5
|
Farid A, Sheibani M, Shojaii A, Noori M, Motevalian M. Evaluation of anti-inflammatory effects of leaf and seed extracts of Plantago major on acetic acid-induced ulcerative colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115595. [PMID: 35934192 DOI: 10.1016/j.jep.2022.115595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plantago major (P. major) has traditionally been used in Iranian Persian medicine to treat gastrointestinal ulcers and bleeding. RESEARCH OBJECTIVES This study aimed to investigate the anti-inflammatory effects of the leaf and seed extracts of P. major in rats with acetic acid-induced ulcerative colitis (UC). MATERIALS AND METHODS To this end, 49 rats were randomly divided into seven groups. UC was induced in all groups but the control (vehicle) group using a single intra-rectal administration of 2 ml of 4% acetic acid. Other groups received daily intraperitoneal (i.p.) injections of the seed extract of P. major (400 mg/kg and 700 mg/kg), the leaf extract of P. major (400 mg/kg and 700 mg/kg), and sulfasalazine (400 mg/kg) for seven consecutive days, respectively. The rats' rectum was surgically removed and evaluated for macroscopic and microscopic damage. The tissue levels of oxidative stress and inflammatory markers were measured using the ELISA method. RESULTS The high-dose leaf extract significantly decreased ulcer index and histopathologic damage as well as the tissue levels of IL-6, TNF-α, PGE2, IL-1β, MPO, and MDA compared to the damage group. The low-dose leaf extract also significantly reduced the levels of some markers. The seed extract in the two used doses caused a modest decrease in the histopathological damages and ulcer index. CONCLUSIONS P. major leaf extract effectively reduces inflammation and mucosal damage in rats with UC, especially when administered in high doses. P. major seed extract has minimal protective effects on UC.
Collapse
Affiliation(s)
- Armita Farid
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Asie Shojaii
- Department of Traditional Pharmacy, School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Noori
- Department of Biology, School of Science, Arak University, Arak, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Artemisinin Alleviates Intestinal Inflammation and Metabolic Disturbance in Ulcerative Colitis Rats Induced by DSS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6211215. [PMID: 35497913 PMCID: PMC9042626 DOI: 10.1155/2022/6211215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Objective This study is aimed to reveal the possible mechanisms of artemisinin in the treatment of ulcerative colitis (UC) through bioinformatics analysis and experimental verification in UC model rats. Methods Firstly, we searched two microarray data of the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between UC samples and normal samples. Then, we selected DEGs for gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The acute UC model of rats was established by using 3.5% dextran sulfate sodium (DSS) for 10 days to verify the core pathway. Finally, we evaluated the therapeutic effect of artemisinin at the molecular level and used metabonomics to study the endogenous metabolites in the rat serum. Results We screened in the GEO database and selected two eligible microarray datasets, GSE36807 and GSE9452. We performed GO function and KEGG pathway enrichment analyses of DEGs and found that these DEGs were mainly enriched in the inflammatory response, immune response, and IL-17 and NF-κB signaling pathways. Finally, we verified the IL-17 signaling pathway and key cytokines, and ELISA and immunohistochemical results showed that artemisinin could downregulate the expression of proinflammatory cytokines such as IL-1β and IL-17 in the IL-17 signaling pathway and upregulate the expression of the anti-inflammatory cytokine PPAR-γ. Metabolomics analysis showed that 33 differential metabolites were identified in the artemisinin group (AG) compared to the model group (MG). Differential metabolites were mainly involved in alanine, aspartate, and glutamate metabolism and synthesis and degradation of ketone bodies. Conclusion In this study, we found that artemisinin can significantly inhibit the inflammatory response in UC rats and regulate metabolites and related metabolic pathways. This study provides a foundation for further research on the mechanism of artemisinin in the treatment of UC.
Collapse
|