1
|
Li B, Ding Z, Ouchi T, Liao Y, Li B, Gong J, Xie Y, Zhao Z, Li L. Deciphering the spatial distribution of Gli1-lineage cells in dental, oral, and craniofacial regions. J Bone Miner Res 2024; 39:1809-1820. [PMID: 39303104 DOI: 10.1093/jbmr/zjae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint. We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misaki-cho, Chiyoda-ku, Tokyo 1010061, Japan
| | - Yueqi Liao
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Pi HJ, Huang B, Yuan Q, Jing JJ. Neural regulation of mesenchymal stem cells in craniofacial bone: development, homeostasis and repair. Front Physiol 2024; 15:1423539. [PMID: 39135707 PMCID: PMC11318092 DOI: 10.3389/fphys.2024.1423539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells endow various functions, including proliferation, multipotency, migration, etc. Craniofacial bones originate from the cranial neural crest and are developed mainly through intramembranous ossification, which are different from long bones. There are varied mesenchymal stem cells existing in the craniofacial bone, including Gli1 + cells, Axin2 + cells, Prx1 + cells, etc. Nerves distributed in craniofacial area are also derived from the neural crest, and the trigeminal nerve is the major sensory nerve in craniofacial area. The nerves and the skeleton are tightly linked spatially, and the skeleton is broadly innervated by sensory and sympathetic nerves, which also participate in bone development, homeostasis and healing process. In this review, we summarize mesenchymal stem cells located in craniofacial bone or, to be more specific, in jaws, temporomandibular joint and cranial sutures. Then we discuss the research advance concerning neural regulation of mesenchymal stem cells in craniofacial bone, mainly focused on development, homeostasis and repair. Discovery of neural regulation of mesenchymal stem cells may assist in treatment in the craniofacial bone diseases or injuries.
Collapse
Affiliation(s)
| | | | - Quan Yuan
- *Correspondence: Quan Yuan, ; Jun-Jun Jing,
| | | |
Collapse
|
3
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Zheng Z, Liu H, Liu S, Luo E, Liu X. Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review. Front Mol Biosci 2024; 11:1362338. [PMID: 38690295 PMCID: PMC11058977 DOI: 10.3389/fmolb.2024.1362338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Craniofacial reconstruction faces many challenges, including high complexity, strong specificity, severe injury, irregular and complex wounds, and high risk of bleeding. Traditionally, the "gold standard" for treating craniofacial bone defects has been tissue transplantation, which involves the transplantation of bone, cartilage, skin, and other tissues from other parts of the body. However, the shape of craniofacial bone and cartilage structures varies greatly and is distinctly different from ordinary long bones. Craniofacial bones originate from the neural crest, while long bones originate from the mesoderm. These factors contribute to the poor effectiveness of tissue transplantation in repairing craniofacial defects. Autologous mesenchymal stem cell transplantation exhibits excellent pluripotency, low immunogenicity, and minimally invasive properties, and is considered a potential alternative to tissue transplantation for treating craniofacial defects. Researchers have found that both craniofacial-specific mesenchymal stem cells and mesenchymal stem cells from other parts of the body have significant effects on the restoration and reconstruction of craniofacial bones, cartilage, wounds, and adipose tissue. In addition, the continuous development and application of tissue engineering technology provide new ideas for craniofacial repair. With the continuous exploration of mesenchymal stem cells by researchers and the continuous development of tissue engineering technology, the use of autologous mesenchymal stem cell transplantation for craniofacial reconstruction has gradually been accepted and promoted. This article will review the applications of various types of mesenchymal stem cells and related tissue engineering in craniofacial repair and reconstruction.
Collapse
Affiliation(s)
| | | | | | - En Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Erratum to “Gli1+ Cells Residing in Bone Sutures Respond to Mechanical Force via IP3R to Mediate Osteogenesis”. Stem Cells Int 2021; 2021:9897280. [PMID: 35340844 PMCID: PMC8942685 DOI: 10.1155/2021/9897280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
|