1
|
Singh A, Anjum B, Naz Q, Raza S, Sinha RA, Ahmad MK, Mehdi AA, Verma N. Night shift-induced circadian disruption: links to initiation of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and risk of hepatic cancer. HEPATOMA RESEARCH 2024:2394-5079.2024.88. [PMID: 39525867 PMCID: PMC7616786 DOI: 10.20517/2394-5079.2024.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The circadian system plays a crucial role in regulating metabolic homeostasis at both systemic and tissue levels by synchronizing the central and peripheral clocks with exogenous time cues, known as zeitgebers (such as the light/dark cycle). Our body's behavioral rhythms, including sleep-wake cycles and feeding-fasting patterns, align with these extrinsic time cues. The body cannot effectively rest and repair itself when circadian rhythms are frequently disrupted. In many shift workers, the internal rhythms fail to fully synchronize with the end and start times of their shifts. Additionally, exposure to artificial light at night (LAN), irregular eating patterns, and sleep deprivation contribute to circadian disruption and misalignment. Shift work and jet lag disrupt the normal circadian rhythm of liver activity, resulting in a condition known as "circadian disruption". This disturbance adversely affects the metabolism and homeostasis of the liver, contributing to excessive fat accumulation and abnormal liver function. Additionally, extended working hours, such as prolonged night shifts, may worsen the progression of non-alcoholic fatty liver disease (NAFLD) toward non-alcoholic steatohepatitis (NASH) and increase disease severity. Studies have demonstrated a positive correlation between night shift work (NSW) and elevated liver enzymes, indicative of hepatic metabolic dysfunction, potentially increasing the risk of hepatocellular carcinoma (HCC) related to NAFLD. This review consolidates research findings on circadian disruption caused by NSW, late chronotype, jet lag, and social jet lag, drawing insights from studies involving both humans and animal models that investigate the effects of these factors on circadian rhythms in liver metabolism.
Collapse
Affiliation(s)
- Anjali Singh
- Department of Physiology, King George’s Medical University, Lucknow226003, India
| | - Baby Anjum
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Qulsoom Naz
- Department of Medicine, King George’s Medical University, Lucknow226003, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | - Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow226014, India
| | | | | | - Narsingh Verma
- Hind Institute of Medical Sciences, Sitapur 261304, India
| |
Collapse
|
2
|
Ferrell JM. Chronobiology of Cancers in the Liver and Gut. Cancers (Basel) 2024; 16:2925. [PMID: 39272783 PMCID: PMC11394324 DOI: 10.3390/cancers16172925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian rhythms dictate the timing of cellular and organismal physiology to maintain homeostasis. Within the liver and gut, circadian rhythms influence lipid and glucose homeostasis, xenobiotic metabolism, and nutrient absorption. Disruption of this orchestrated timing is known to negatively impact human health and contribute to disease progression, including carcinogenesis. Dysfunctional core clock timing has been identified in malignant growths and may be used as a molecular signature of disease progression. Likewise, the circadian clock and its downstream effectors also represent potential for novel therapeutic targets. Here, the role of circadian rhythms in the pathogenesis of cancers of the liver and gut will be reviewed, and chronotherapy and chronopharmacology will be explored as potential treatment options.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
3
|
Ye Z, Du Y, Yu W, Lin Y, Zhang L, Chen X. Construction of a circadian rhythm-relevant gene signature for hepatocellular carcinoma prognosis, immunotherapy and chemosensitivity prediction. Heliyon 2024; 10:e33682. [PMID: 39040257 PMCID: PMC11261054 DOI: 10.1016/j.heliyon.2024.e33682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Aims This study explored the molecular and biologic mechanisms underlying the association between circadian rhythm disorders (CRD) and increased risk for hepatocellular carcinoma (HCC). Background CRD are linked to increased risk for HCC, but the molecular and biologic mechanisms underlying this association are limited.ObjectiveThe study constructed and validated a CRD related gene model as an independent prognostic factor for HCC, providing insight into the molecular mechanisms linking CRD to increased HCC risk and identifying potential indicators for the efficacy of immunotherapy and anticancer drugs. This helps provide important clues for personalized treatment strategies for HCC patients. Methods Gene sets correlated with circadian rhythm were obtained from the Molecular Signatures Database (MSigDB) to intersect with differentially expressed genes (DEGs) between tumor samples and control samples in The Cancer Genome Atlas (TCGA) and HCCDB18 from Hepatocellular Carcinoma Cell DataBase (HCCDB). The CRD related gene model was developed by univariate Cox and stepwise multivariate analysis. Immune checkpoint blockade (ICB) therapy and anticancer drugs were analyzed using the tumor immune dysfunction and exclusion (TIDE) and pRRophetic, respectively. Seurat determined the cell type of HCC by analyzing single-cell data, and malignant cells were identified using Copykat. To detect the mRNA levels of genes in the CRD related gene model, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out. Results The activity of circadian rhythm in HCC tissue was significantly lower than that in control tissue. Subsequently, EZH2, IMPDH2, TYMS and SERPINE1 were selected to construct the CRD related gene model, which was an independent factor for HCC prognosis. Notably, low-risk patients had lower levels of immune cell infiltration and lower TIDE scores compared to high-risk patients with HCC, indicating that patients with a low risk may derive more benefit from immunotherapy. IMPDH2, TYMS and SERPINE1 expressed significantly higher in malignant cells than in benign epithelial cells. Conclusions This study presents a CRD related gene model to reveal the molecular perspective of the dependent mechanism of the association between CRD and cancer, which provides a potential indicator for understanding the preclinical efficacy of ICB and anticancer drugs.
Collapse
Affiliation(s)
- Zhiyu Ye
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Ying Du
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Wenguan Yu
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yunshou Lin
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Li Zhang
- Department of Hernia and Hepatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Xiaoyu Chen
- Department of General Medicine, The Affiliation People's Hospital of Ningbo University, Ningbo, 315000, China
| |
Collapse
|
4
|
Ayan D, Cagatay A. Bioinformatic analysis of genetic changes CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3, and NPAS2 proteins in HCC patients. HEPATOLOGY FORUM 2023; 4:108-117. [PMID: 37822309 PMCID: PMC10564247 DOI: 10.14744/hf.2023.2023.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 10/13/2023]
Abstract
Background and Aim Genes related to the circadian rhythm control various biological processes. The aim of this study was to comprehensively investigate the mutational and mRNA profile of core circadian rhythm genes in hepatocellular cancer (HCC) samples. Materials and Methods In this study, the gene profile of a total of 369 patients with HCC was examined over the data obtained from the cancer genome atlas database through-cBioPortal. The effects of mutations on protein were examined by scoring the Polymorphism Phenotyping v2, Mutation Assessor, and SIFT-databases. While the association of genes with other genes was determined with the GeneMANIA-database, the association of expression levels in the genes with overall survival (OS) was evaluated with the Kaplan-Meier Plot database. Results As a result of the analyses, there were a total of 25 mutations. Decreased expression levels of PER1 (1.3e-05), PER3 (p=0.046), and CRY2 (p=1.8e-06) genes were found statistically associated with shorter OS. It was also found that increased expression levels of the PER2 (p=0.045) gene were associated with longer OS, and increased expression levels of the NPAS2 (p=9e-04) gene were associated with shorter OS. Conclusion In particular, changes in the PER1, PER2, CRY2, and NPAS2 genes may provide possible molecular targets in chemotherapy and immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Durmus Ayan
- Department of Medical Biochemistry, Nigde Training and Research Hospital, Nigde, Turkiye
- Department of Medical Biochemistry, Nigde Omer Halisdemir University, School of Medicine, Nigde, Turkiye
| | - Ak Cagatay
- Nigde Training and Research Hospital, Department of Gastroenterology, Nigde, Turkiye
| |
Collapse
|
5
|
Chi H, Yang J, Peng G, Zhang J, Song G, Xie X, Xia Z, Liu J, Tian G. Circadian rhythm-related genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol 2023; 14:1091218. [PMID: 36969232 PMCID: PMC10036372 DOI: 10.3389/fimmu.2023.1091218] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundHead and neck squamous cell carcinoma (HNSCC) is the most common head and neck cancer and is highly aggressive and heterogeneous, leading to variable prognosis and immunotherapy outcomes. Circadian rhythm alterations in tumourigenesis are of equal importance to genetic factors and several biologic clock genes are considered to be prognostic biomarkers for various cancers. The aim of this study was to establish reliable markers based on biologic clock genes, thus providing a new perspective for assessing immunotherapy response and prognosis in patients with HNSCC.MethodsWe used 502 HNSCC samples and 44 normal samples from the TCGA-HNSCC dataset as the training set. 97 samples from GSE41613 were used as an external validation set. Prognostic characteristics of circadian rhythm-related genes (CRRGs) were established by Lasso, random forest and stepwise multifactorial Cox. Multivariate analysis revealed that CRRGs characteristics were independent predictors of HNSCC, with patients in the high-risk group having a worse prognosis than those in the low-risk group. The relevance of CRRGs to the immune microenvironment and immunotherapy was assessed by an integrated algorithm.Results6-CRRGs were considered to be strongly associated with HNSCC prognosis and a good predictor of HNSCC. The riskscore established by the 6-CRRG was found to be an independent prognostic factor for HNSCC in multifactorial analysis, with patients in the low-risk group having a higher overall survival (OS) than the high-risk group. Nomogram prediction maps constructed from clinical characteristics and riskscore had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and immune checkpoint expression and were more likely to benefit from immunotherapy.Conclusion6-CRRGs play a key predictive role for the prognosis of HNSCC patients and can guide physicians in selecting potential responders to prioritise immunotherapy, which could facilitate further research in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Zhijia Xia, ; Jinhui Liu, ; Gang Tian,
| |
Collapse
|
6
|
de Assis LVM, Demir M, Oster H. The role of the circadian clock in the development, progression, and treatment of non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2023; 237:e13915. [PMID: 36599410 DOI: 10.1111/apha.13915] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The circadian clock comprises a cellular endogenous timing system coordinating the alignment of physiological processes with geophysical time. Disruption of circadian rhythms has been associated with several metabolic diseases. In this review, we focus on liver as a major metabolic tissue and one of the most well-studied organs with regard to circadian regulation. We summarize current knowledge about the role of local and systemic clocks and rhythms in regulating biological functions of the liver. We discuss how the disruption of circadian rhythms influences the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). We also critically evaluate whether NAFLD/NASH may in turn result in chronodisruption. The last chapter focuses on potential roles of the clock system in prevention and treatment of NAFLD/NASH and the interaction of current NASH drug candidates with liver circadian rhythms and clocks. It becomes increasingly clear that paying attention to circadian timing may open new avenues for the optimization of NAFLD/NASH therapies and provide interesting targets for prevention and treatment of these increasingly prevalent disorders.
Collapse
Affiliation(s)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
8
|
Is Fasting Good When One Is at Risk of Liver Cancer? Cancers (Basel) 2022; 14:cancers14205084. [PMID: 36291868 PMCID: PMC9600146 DOI: 10.3390/cancers14205084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer-related deaths worldwide, is a multistep process that usually develops in the background of cirrhosis, but also in a non-cirrhotic state in patients with non-alcoholic fatty liver disease (NAFLD) or viral hepatis. Emerging evidence suggests that intermittent fasting can reduce the risk of cancer development and could improve response and tolerance to treatment through the metabolic and hormonal adaptations induced by the low energy availability that finally impairs cancer cells’ adaptability, survival and growth. The current review will outline the beneficial effects of fasting in NAFLD/NASH patients and the possible mechanisms that can prevent HCC development, including circadian clock re-synchronization, with a special focus on the possibility of applying this dietary intervention to cirrhotic patients.
Collapse
|
9
|
Marcu LG. Developments on tumour site-specific chrono-oncology towards personalised treatment. Crit Rev Oncol Hematol 2022; 179:103803. [PMID: 36058443 DOI: 10.1016/j.critrevonc.2022.103803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Research into chronotherapy has seen notable developments over the past decades, with a clear focus on the identification of circadian clock genes as potential treatment targets. Moreover, new factors are investigated, such as gender and the role of cancer stem cells in influencing the outcome of chronomodulated treatments. These factors could add to the arsenal of parameters that assist with patient stratification and treatment personalisation. Literature analysis showed that certain anatomical sites received more attention and the associated studies reported clinically significant results, even though some findings are contradictory. The aim of this work was to review the existing studies on chrono-oncology using a tumour site-specific approach and to highlight the status of research in various cancers. Inconsistencies in data reporting, the nature of the studies and the highly heterogeneous patient characteristics, highlight the need for well-designed randomised controlled trials to elucidate the real potential of chronotherapy in oncology.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, Oradea 410087, Romania; School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
10
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus’s suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus’s life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
11
|
Huang Y, Luo W, Chen S, Su H, Zhu W, Wei Y, Qiu Y, Long Y, Shi Y, Wei J. Association of a Novel DOCK2 Mutation-Related Gene Signature With Immune in Hepatocellular Carcinoma. Front Genet 2022; 13:872224. [PMID: 35620462 PMCID: PMC9127407 DOI: 10.3389/fgene.2022.872224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality worldwide. Many studies have shown that dedicator of cytokinesis 2 (DOCK2) has a crucial role as a prognostic factor in various cancers. However, the potentiality of DOCK2 in the diagnosis of HCC has not been fully elucidated. In this work, we aimed to investigate the prognostic role of DOCK2 mutation in HCC. The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts were utilized to identify the mutation frequency of DOCK2. Then, univariate Cox proportional hazard regression analysis, random forest (RF), and multivariate Cox regression analysis were performed to develop the risk score that was significantly related to DOCK2 mutation. Moreover, Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune correlation analysis were conducted for an in-depth study of the biological process of DOCK2 mutation involved in HCC. The results revealed that the mutation frequency of DOCK2 was relatively higher than that in non-cancer control subjects, and patients with DOCK2 mutations had a low survival rate and a poor prognosis compared with the DOCK2-wild group. In addition, the secretin receptor (SCTR), tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing 1 (TANC1), Alkb homolog 7 (ALKBH7), FRAS1-related extracellular matrix 2 (FREM2), and G protein subunit gamma 4 (GNG4) were found to be the most relevant prognostic genes of DOCK2 mutation, and the risk score based on the five genes played an excellent role in predicting the status of survival, tumor mutation burden (TMB), and microsatellite instability (MSI) in DOCK2 mutant patients. In addition, DOCK2 mutation and the risk score were closely related to immune responses. In conclusion, the present study identifies a novel prognostic signature in light of DOCK2 mutation-related genes that shows great prognostic value in HCC patients; and this gene mutation might promote tumor progression by influencing immune responses. These data may provide valuable insights for future investigations into personalized forecasting methods and also shed light on stratified precision oncology treatment.
Collapse
Affiliation(s)
- Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Siyun Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuanyuan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yan Long
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yanxia Shi
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Circadian and Immunity Cycle Talk in Cancer Destination: From Biological Aspects to In Silico Analysis. Cancers (Basel) 2022; 14:cancers14061578. [PMID: 35326729 PMCID: PMC8945968 DOI: 10.3390/cancers14061578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The circadian cycle is a natural cycle of the body repeated every 24 h, based on a day and night rhythm, and it affects many body processes. The present article reviews the importance and role of the circadian cycle in cancer and its association with the immune system and immunotherapy drugs at the cellular and molecular levels. It also examines the genes and cellular pathways involved in both circadian and immune systems. It offers possible computational solutions to increase the effectiveness of cancer treatment concerning the circadian cycle. Abstract Cancer is the leading cause of death and a major problem to increasing life expectancy worldwide. In recent years, various approaches such as surgery, chemotherapy, radiation, targeted therapies, and the newest pillar, immunotherapy, have been developed to treat cancer. Among key factors impacting the effectiveness of treatment, the administration of drugs based on the circadian rhythm in a person and within individuals can significantly elevate drug efficacy, reduce adverse effects, and prevent drug resistance. Circadian clocks also affect various physiological processes such as the sleep cycle, body temperature cycle, digestive and cardiovascular processes, and endocrine and immune systems. In recent years, to achieve precision patterns for drug administration using computational methods, the interaction of the effects of drugs and their cellular pathways has been considered more seriously. Integrated data-derived pathological images and genomics, transcriptomics, and proteomics analyses have provided an understanding of the molecular basis of cancer and dramatically revealed interactions between circadian and immunity cycles. Here, we describe crosstalk between the circadian cycle signaling pathway and immunity cycle in cancer and discuss how tumor microenvironment affects the influence on treatment process based on individuals’ genetic differences. Moreover, we highlight recent advances in computational modeling that pave the way for personalized immune chronotherapy.
Collapse
|
13
|
Using Microbiome-Based Approaches to Deprogram Chronic Disorders and Extend the Healthspan following Adverse Childhood Experiences. Microorganisms 2022; 10:microorganisms10020229. [PMID: 35208684 PMCID: PMC8879770 DOI: 10.3390/microorganisms10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host–microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.
Collapse
|