1
|
Moin AT, Singh G, Ahmed N, Saiara SA, Timofeev VI, Ahsan Faruqui N, Sharika Ahsan S, Tabassum A, Nebir SS, Andalib KMS, Araf Y, Ullah MA, Sarkar B, Islam NN, Zohora US. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J Biomol Struct Dyn 2023; 41:833-855. [PMID: 36617426 DOI: 10.1080/07391102.2021.2014969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Afrida Tabassum
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Sadman Sakib Nebir
- Department of Microbiology and Immunology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Yusha Araf
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Asad Ullah
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M. Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot. Life (Basel) 2022; 12:1743. [PMID: 36362898 PMCID: PMC9692583 DOI: 10.3390/life12111743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2024] Open
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sania Majeed
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Zehra
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Naveed M, Ali U, Karobari MI, Ahmed N, Mohamed RN, Abullais SS, Kader MA, Marya A, Messina P, Scardina GA. A Vaccine Construction against COVID-19-Associated Mucormycosis Contrived with Immunoinformatics-Based Scavenging of Potential Mucoralean Epitopes. Vaccines (Basel) 2022; 10:664. [PMID: 35632420 PMCID: PMC9147184 DOI: 10.3390/vaccines10050664] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 01/09/2023] Open
Abstract
Mucormycosis is a group of infections, caused by multiple fungal species, which affect many human organs and is lethal in immunocompromised patients. During the COVID-19 pandemic, the current wave of mucormycosis is a challenge to medical professionals as its effects are multiplied because of the severity of COVID-19 infection. The variant of concern, Omicron, has been linked to fatal mucormycosis infections in the US and Asia. Consequently, current postdiagnostic treatments of mucormycosis have been rendered unsatisfactory. In this hour of need, a preinfection cure is needed that may prevent lethal infections in immunocompromised individuals. This study proposes a potential vaccine construct targeting mucor and rhizopus species responsible for mucormycosis infections, providing immunoprotection to immunocompromised patients. The vaccine construct, with an antigenicity score of 0.75 covering, on average, 92-98% of the world population, was designed using an immunoinformatics approach. Molecular interactions with major histocompatibility complex-1 (MHC-I), Toll-like receptors-2 (TLR2), and glucose-regulated protein 78 (GRP78), with scores of -896.0, -948.4, and -925.0, respectively, demonstrated its potential to bind with the human immune receptors. It elicited a strong predicted innate and adaptive immune response in the form of helper T (Th) cells, cytotoxic T (TC) cells, B cells, natural killer (NK) cells, and macrophages. The vaccine cloned in the pBR322 vector showed positive amplification, further solidifying its stability and potential. The proposed construct holds a promising approach as the first step towards an antimucormycosis vaccine and may contribute to minimizing postdiagnostic burdens and failures.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan; (M.N.); (U.A.)
| | - Urooj Ali
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan; (M.N.); (U.A.)
| | - Mohmed Isaqali Karobari
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Roshan Noor Mohamed
- Department of Pediatric Dentistry, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohammed Abdul Kader
- Department Restorative Dental Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Anand Marya
- Department of Orthodontics, University of Puthisastra, Phnom Penh 12211, Cambodia;
| | - Pietro Messina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy;
| | - Giuseppe Alessandro Scardina
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, 90133 Palermo, Italy;
| |
Collapse
|
4
|
New Insights into Immune-Based Diagnosis, Therapy and Prophylaxis for Infectious Diseases 2020. J Immunol Res 2022; 2021:9767464. [PMID: 35005035 PMCID: PMC8739921 DOI: 10.1155/2021/9767464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
|
5
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|