1
|
Sun HW, Bai YY, Qin ZL, Li RZ, Madzikatire TB, Akuetteh PDP, Li Q, Kong HR, Jin YP. Transfection of 12/15-lipoxygenase effectively alleviates inflammatory responses during experimental acute pancreatitis. World J Gastroenterol 2024; 30:4544-4556. [DOI: 10.3748/wjg.v30.i42.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP), the initially triggered inflammatory process in the pancreas, can be life-threatening. It has been reported that 15-lipoxygenase may promote the removal of damaged intracellular components, maintain intracellular homeostasis, and promote apoptosis by upregulating the activity of caspases. Despite an increased understanding of the lipoxygenase pathway in inflammation and immune diseases, the role of the Alox15 gene product in modulating the inflammatory changes during AP is not well defined.
AIM To investigate the effect of Alox15 expression in cerulein-induced AP in rats.
METHODS Model rats were transfected with Alox15 by injecting a recombinant lentivirus vector encoding Alox15 into the left gastric artery before inducing AP. The expression of Alox15 was then assessed at the mRNA and protein levels.
RESULTS Our in vivo results showed that serum amylase activity and pancreatic tissue water content were significantly reduced in Alox15-transfected rats. Further, the mRNA expression levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1, as well as the protein expression of nuclear factor kappa B in pancreatic tissue were reduced. Additionally, we observed an upregulation of cleaved caspase-3 that implies an induction of apoptosis in pancreatic cells. The transfection of Alox15 resulted in a lower number of autophagic vacuoles in AP.
CONCLUSION Our findings demonstrate a regulatory role of Alox15 in apoptosis and autophagy, making it a potential therapeutic target for AP.
Collapse
Affiliation(s)
- Hong-Wei Sun
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yong-Yu Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Zhen-Liu Qin
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Ri-Zhao Li
- Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | | | | | - Qiang Li
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hong-Ru Kong
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Yue-Peng Jin
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
2
|
Zhang T, Zhu S, Huang GW. ALKBH5 suppresses autophagic flux via N6-methyladenosine demethylation of ZKSCAN3 mRNA in acute pancreatitis. World J Gastroenterol 2024; 30:1764-1776. [PMID: 38617741 PMCID: PMC11008368 DOI: 10.3748/wjg.v30.i12.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/03/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine (m6A) RNA modification plays an essential role in a wide range of pathological conditions. Impaired autophagy is a critical hallmark of acute pancreatitis (AP). AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP. METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells (MPC-83), and the results were confirmed by the levels of amylase and inflammatory factors. Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes. ZKSCAN3 and ALKBH5 were knocked down to study the function in AP. A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH. RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established. The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP. The expression of ZKSCAN3 was upregulated in AP. Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors, LC3-II/I and SQSTM1. Furthermore, ALKBH5 was upregulated in AP. Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP. Notably, the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA. The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP. Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA, which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner. CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP, thereby aggravating the severity of the disease.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| | - Shuai Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| | - Geng-Wen Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, Hunan, China
| |
Collapse
|
3
|
Wei H, Zhao H, Cheng D, Zhu Z, Xia Z, Lu D, Yu J, Dong R, Yue J. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis. Int Immunopharmacol 2024; 127:111438. [PMID: 38159552 DOI: 10.1016/j.intimp.2023.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1β and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China.
| | - Dongliang Cheng
- Pediatric Intensive Care Unit, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450000, Henan Province, China
| | - Zhenni Zhu
- Pediatric Gastroenterology Department, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhi Xia
- Pediatric Intensive Care Unit, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Dan Lu
- Department of Clinical Examination, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yu
- Department of General Surgery, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Ran Dong
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yue
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
4
|
Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis. Front Genet 2023; 14:998035. [PMID: 36793898 PMCID: PMC9923090 DOI: 10.3389/fgene.2023.998035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Autophagy pathway involves maintaining intracellular homeostasis by regulating the degradation of cytoplasmic components. Disfunction of autophagic process has been confirmed to be critical mechanism in many diseases, including cancer, inflammation, infection, degeneration and metabolic disorders. Recent studies have shown that autophagy is one of the early events in acute pancreatitis. Impaired autophagy promotes the abnormal activation of zymogen granules and results in apoptosis and necrosis of exocrine pancreas. Furthermore, multiple signal paths involve progression of acute pancreatitis by regulating autophagy pathway. This article provides a comprehensive review of the recent advances in epigenetic regulation of autophagy and the role of autophagy in acute pancreatitis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| |
Collapse
|
5
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Lei C, Huo Y, Ma F, Liao J, Hu Z, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Long-term copper exposure caused hepatocytes autophagy in broiler via miR-455-3p-OXSR1 axis. Chem Biol Interact 2023; 369:110256. [PMID: 36372260 DOI: 10.1016/j.cbi.2022.110256] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Copper (Cu) is a common environmental pollutant which has been identified to cause toxic effects on animal bodies. MicroRNAs (miRNAs) are a type of non-coding RNAs involved in the regulation of various cellular activities including autophagy, but the potential regulatory mechanisms after excess Cu intake are still uncertain. Our previous study has prompted that Cu exposure reduced liver miR-455-3p levels. Herein, miR-455-3p was found to be an important molecule in the regulation of Cu-induced autophagy in vivo and in vitro. Histopathology observation of liver tissue indicated that Cu-induced severe hepatic damage including cellular swelling and vacuolization. Meanwhile, excessive Cu exposure not only heighten the mRNA and protein expression levels of Beclin1, Atg5, LC3Ⅰ and LC3Ⅱ, but also decreased miR-455-3p levels. In vitro experiment, Cu-induced autophagy can be attenuated by miR-455-3p overexpression. Additionally, oxidative stress-responsive 1 (OXSR1) was identified as a direct downstream target of miR-455-3p by dual luciferase reporter assays. Moreover, knockdown of OXSR1 can attenuate the autophagy induced by Cu treatment and the miR-455-3p inhibitor. Overall, the miR-455-3p-OXSR1 axis works as a regulator of autophagy under Cu stress, which provides a basis for further revealing the mechanism of chronic Cu poisoning.
Collapse
Affiliation(s)
- Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
7
|
Natural Chinese herbs for the prevention and treatment of acute pancreatitis: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
8
|
卢 一, 吴 俊, 蒋 文, 刘 江, 且 华, 孙 红, 汤 礼. [Abdominal puncture drainage alleviates severe acute pancreatitis in rats by activating Nrf-2/HO-1 pathway and promoting autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:561-567. [PMID: 35527492 PMCID: PMC9085580 DOI: 10.12122/j.issn.1673-4254.2022.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the effect of early abdominal puncture drainage (APD) on autophagy and Nrf-2/HO-1 pathway in rats with severe acute pancreatitis (SAP) and explore the possibile mechanism. METHODS Thirty-two male SD rats were randomly divided into sham-operated (SO) group, SAP group with retrograde injection of 4% sodium taurocholate, APD group with insertion of a drainage tube into the lower right abdomen after SAP induction, and APD + ZnPP group with intraperitoneal injection of 30 mg/kg ZnPP 12 h before APD modeling. Blood samples were collected from the rats 12 h after modeling for analysis of amylase and lipase levels and serum inflammatory factors. The pathological changes of the pancreatic tissue were observed with HE staining. Oxidative stress in the pancreatic tissue was detected with colorimetry, and sub-organelle structure and autophagy in pancreatic acinar cells were observed by transmission electron microscopy. The expressions of autophagy-related proteins and Nrf-2/HO-1 pathway were detected using RT-PCR and Western blotting. RESULTS Compared with those in SAP group, the rats with APD treatment showed significantly alleviated pathologies in the pancreas, reduced serum levels of lipase, amylase and inflammatory factors, lowered levels of oxidative stress, and activated expressions of Nrf-2/HO-1 pathway in the pancreas. The ameliorating effect of ADP was significantly inhibited by ZnPP treatment before modeling. APD obviously reversed mitochondrial and endoplasmic reticulum damages and p62 accumulation induced by SAP. CONCLUSION APD treatment can suppress oxidative stress and repair impaired autophagy in rats with SAP by activating the Nrf-2/HO-1 pathway, thereby reducing the severity of SAP.
Collapse
Affiliation(s)
- 一琛 卢
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 俊 吴
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 文 蒋
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 江涛 刘
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 华吉 且
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 红玉 孙
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| | - 礼军 汤
- 西南交通大学医学院,四川 成都 610063School of Clinical Medicine, Southwest Jiaotong University, Chengdu 610063, China
- 西部战区总医院全军普通外科中心//四川省胰腺损伤与修复重点 实验室,四川 成都 610083Center of General Surgery//Sichuan Provincial Key Laboratory of Pancreatic Injury and Repair, General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
9
|
Wang Y, Li Y, Gao S, Yu X, Chen Y, Lin Y. Tetrahedral Framework Nucleic Acids Can Alleviate Taurocholate-Induced Severe Acute Pancreatitis and Its Subsequent Multiorgan Injury in Mice. NANO LETTERS 2022; 22:1759-1768. [PMID: 35138113 DOI: 10.1021/acs.nanolett.1c05003] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas accompanied by tissue injury and necrosis. It not only affects the pancreas but also triggers a systemic inflammatory response that leads to multiorgan failure or even death. Moreover, there is no effective treatment currently that can reverse the disease progression. In this study, tetrahedral framework nucleic acids (tFNAs) were utilized to treat SAP in mice for the first time and proved to be effective in suppressing inflammation and preventing pathological cell death. Serum levels of pancreatitis-related biomarkers witnessed significant changes after tFNAs treatment. Reduction in the expression of certain cytokines involved in local and systemic inflammatory response were observed, together with alteration in proteins related to cell death and apoptosis. Collectively, our results demonstrate that tFNAs could both alleviate SAP and its subsequent multiorgan injury in mice, thus offering a novel and effective option to deal with SAP in the future.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Yu
- Department of Orthopedic Surgery and Orthopedic Research Institute Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|