1
|
Martínez-Herrera JF, Sánchez Domínguez G, Juárez-Vignon Whaley JJ, Carrasco-Cara Chards S, López Vrátný C, Guzmán Casta J, Riera Sala RF, Alatorre-Alexander JA, Seidman Sorsby A, Cruz Zermeño M, Conde Flores E, Flores-Mariñelarena RR, Sánchez-Ríos CP, Martínez-Barrera LM, Gerson-Cwilich R, Santillán-Doherty P, Jiménez López JC, López Hernández W, Rodríguez-Cid JR. Mutation profile in liquid biopsy tested by next generation sequencing in Mexican patients with non-small cell lung carcinoma and its impact on survival. J Thorac Dis 2024; 16:161-174. [PMID: 38410597 PMCID: PMC10894362 DOI: 10.21037/jtd-23-1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/24/2023] [Indexed: 02/28/2024]
Abstract
Background Lung cancer represents a significant global health concern, often diagnosed in its advanced stages. The advent of massive DNA sequencing has revolutionized the landscape of cancer treatment by enabling the identification of target mutations and the development of tailored therapeutic approaches. Unfortunately, access to DNA sequencing technology remains limited in many developing countries. In this context, we emphasize the critical importance of integrating this advanced technology into healthcare systems in developing nations to improve treatment outcomes. Methods We conducted an analysis of electronic clinical records of patients with confirmed advanced non-small cell lung cancer (NSCLC) and a verified negative status for the epidermal growth factor receptor (EGFR) mutation. These patients underwent next-generation sequencing (NGS) for molecular analysis. We performed descriptive statistical analyses for each variable and conducted both univariate and multivariate statistical analyses to assess their impact on progression-free survival (PFS) and overall survival (OS). Additionally, we classified genetic mutations as actionable or non-actionable based on the European Society for Medical Oncology Scale of Clinical Actionability of Molecular Targets (ESCAT) guidelines. Results Our study included a total of 127 patients, revealing the presence of twenty-one distinct mutations. The most prevalent mutations were EGFR (18.9%) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (15.7%). Notably, anaplastic lymphoma kinase (ALK) [hazard ratio (HR): 0.258, P<0.001], tumor mutation burden (TMB) (HR: 2.073, P=0.042) and brain magnetic resonance imaging (MRI) (HR: 0.470, P=0.032) demonstrated statistical significance in both the univariate and multivariate analyses with respect to PFS. In terms of OS, ALK (HR: 0.285, P<0.001) and EGFR (HR: 0.482, P=0.024) exhibited statistical significance in both analyses. Applying the ESCAT classification system, we identified actionable genomic variations (ESCAT level-1), including EGFR, ALK, breast cancer (BRAF) gene, c-ros oncogene 1 (ROS1), and rearranged during transfection (RET) gene, in 32.3% of the patients. Conclusions Our findings from massive DNA sequencing underscore that 32.3% of patients who test negative for the EGFR mutation possess other targetable mutations, enabling them to receive personalized, targeted therapies at an earlier stage of their disease. Implementing massive DNA sequencing in developing countries is crucial to enhance survival rates among NSCLC patients and guide more effective treatment strategies.
Collapse
Affiliation(s)
- José Fabián Martínez-Herrera
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
- Cancer Center, Medical Center American British Cowdray, Mexico City, Mexico
- Cancer Research Networking, Universidad Cientifica del Sur, Lima, Perú
| | - Gisela Sánchez Domínguez
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan J. Juárez-Vignon Whaley
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Mexico City, Mexico
| | | | | | - Jordi Guzmán Casta
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | - Rodrigo F. Riera Sala
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | - Jorge A. Alatorre-Alexander
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - Carla P. Sánchez-Ríos
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | - Luis M. Martínez-Barrera
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | | | - Patricio Santillán-Doherty
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
- Medical Direction, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | | | - William López Hernández
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
| | - Jerónimo R. Rodríguez-Cid
- Department of Thoracic Oncology, Instituto Nacional de Enfermedades Respiratorias, Dr. Ismael Cosío Villegas, Mexico City, Mexico
- Oncology Center, Medica Sur Hospital, Mexico City, Mexico
| |
Collapse
|
2
|
Genomic Landscape of Non-Small Cell Lung Cancer (NSCLC) in East Asia Using Circulating Tumor DNA (ctDNA) in Clinical Practice. Curr Oncol 2022; 29:2154-2164. [PMID: 35323374 PMCID: PMC8946965 DOI: 10.3390/curroncol29030174] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma-based next-generation sequencing (NGS) has demonstrated the potential to guide the personalized treatment of non-small cell lung cancer (NSCLC). Inherent differences in mutational genomic profiles of NSCLC exist between Asian and Western populations. However, the published mutational genomic data of NSCLC has largely focused on Western populations. We retrospectively analyzed results from comprehensive NGS of plasma (Guardant360®) from patients with advanced non-squamous NSCLC, as seen in clinical practice. Tests were ordered between January 2016 and December 2020 in Hong Kong, Korea, Taiwan, Japan and Southeast Asia. The assay identified single-nucleotide variants (SNV), insertions and deletions, and fusions and amplifications in 74 genes. In total, 1608 plasma samples from patients with advanced non-squamous NSCLC were tested. The median turnaround time for test results was 7 days. Of the samples with detectable ctDNA (85.6%), 68.3% had alterations in at least one NCCN-recommended NSCLC biomarker. EGFR driver mutations were most frequent (48.6%), followed by alterations of KRAS (7.9%), ERBB2 (4.1%) and ALK (2.5%). Co-mutations of EGFR and KRAS occurred in 4.7% of samples. KRAS G12C was identified in 18.6% of all samples with KRAS mutations. Common mutations, such as exon 19 deletions and L858R, accounted for 88.4% of EGFR driver mutations. Among the samples with any EGFR driver mutation, T790M was present in 36.9%, including 7.7% with additional alterations associated with osimertinib resistance (MET amplification, C797X). Comprehensive plasma-based NGS provided the timely and clinically informative mutational genomic profiling of advanced non-squamous NSCLC in East Asian patients.
Collapse
|