1
|
May L, Hu B, Jerajani P, Jagdeesh A, Alhawiti O, Cai L, Semenova N, Guo C, Isbell M, Deng X, Faber AC, Pillappa R, Bandyopadhyay D, Wang XY, Neuwelt A, Koblinski J, Bos PD, Li H, Martin R, Landry JW. The Innate Immune System and the TRAIL-Bcl-XL Axis Mediate a Sex Bias in Lung Cancer and Confer a Therapeutic Vulnerability in Females. Cancer Res 2024; 84:4140-4155. [PMID: 39312191 DOI: 10.1158/0008-5472.can-24-0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
There is a significant sex bias in lung cancer, with males showing increased mortality compared with females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex bias in humanized mice, with male patient-derived xenograft lung tumors being more progressive and deadlier than female patient-derived xenograft lung tumors, we identified mouse tumor models of lung cancer with the same sex bias. This sex bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex bias in growth and lethality required intact ovaries, functional innate NK cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anticancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-Bcl-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the Bcl-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer. Significance: Lung cancers in females are more susceptible to killing through a TRAIL-Bcl-XL axis, indicating that targeting this axis therapeutically could represent a personalized approach to treat female patients with lung cancer.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Bin Hu
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Preksha Jerajani
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Ohud Alhawiti
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Lillian Cai
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Nina Semenova
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Chunqing Guo
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Madison Isbell
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Xiaoyan Deng
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Anthony C Faber
- Department of Biostatistics, School of Population Health, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Raghavendra Pillappa
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, VCU Massey Comprehensive Cancer Center, Philips Institute for Oral Health Research, Richmond, Virginia
| | - Dipankar Bandyopadhyay
- VCU OVPRI, Virginia Commonwealth University, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| | - Alexander Neuwelt
- Department of Pharmaceutical Science, Hampton University, Hampton, Virginia
- Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jennifer Koblinski
- Department of Microbiology and Immunology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Paula D Bos
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, VCU Massey Comprehensive Cancer Center, Philips Institute for Oral Health Research, Richmond, Virginia
| | - Howard Li
- Division of Hematology and Oncology, Department of Internal Medicine, Richmond VA Medical Center, Richmond, Virginia
| | - Rebecca Martin
- Department of Pathology, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, Richmond, Virginia
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, VCU Institute of Molecular Medicine, Richmond, Virginia
| |
Collapse
|
2
|
Biedermann A, Patra-Kneuer M, Mougiakakos D, Büttner-Herold M, Mangelberger-Eberl D, Berges J, Kellner C, Altmeyer S, Bittenbring JT, Augsberger C, Ilieva-Babinsky K, Haskamp S, Beier F, Lischer C, Vera J, Lührmann A, Bertz S, Völkl S, Jacobs B, Steidl S, Mackensen A, Bruns H. Blockade of the CD47/SIRPα checkpoint axis potentiates the macrophage-mediated antitumor efficacy of tafasitamab. Haematologica 2024; 109:3928-3940. [PMID: 38934068 PMCID: PMC11609795 DOI: 10.3324/haematol.2023.284795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophages are one of the key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD19 antibody tafasitamab, approved in combination with lenalidomide for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL). However, antibody-dependent cellular phagocytosis (ADCP) in the tumor microenvironment can be counteracted by increased expression of the inhibitory receptor SIRPα on macrophages and its ligand, the immune checkpoint molecule CD47, on tumor cells. The aim of this study was to investigate the impact of the CD47-SIRPα axis on tafasitamab- mediated phagocytosis and explore the potential of anti-CD47 blockade to enhance its antitumor activity. Elevated expression of both SIRPα and CD47 was observed in DLBCL patient-derived lymph node biopsies compared to healthy control lymph nodes. CRISPR-mediated CD47 overexpression affected tafasitamab-mediated ADCP in vitro and increased expression of SIRPα on macrophages correlated with decreased ADCP activity of tafasitamab against DLBCL cell lines. A combination of tafasitamab and an anti-CD47 blocking antibody enhanced ADCP activity of in vitro-generated macrophages. Importantly, tafasitamab-mediated phagocytosis was elevated in combination with CD47 blockade using primary DLBCL cells and patient-derived lymphoma-associated macrophages in an autologous setting. Furthermore, lymphoma cells with low CD19 expression were efficiently eliminated by the combination treatment. Finally, combined treatment of tafasitamab and an anti-CD47 antibody resulted in enhanced tumor volume reduction and survival benefit in lymphoma xenograft mouse models. These findings provide evidence that CD47 blockade can enhance the phagocytic potential of tumor-targeting immunotherapies such as tafasitamab and suggest that there is value in exploring the combination in the clinic.
Collapse
MESH Headings
- CD47 Antigen/metabolism
- CD47 Antigen/antagonists & inhibitors
- Humans
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Animals
- Mice
- Antigens, Differentiation/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Phagocytosis/drug effects
- Tumor Microenvironment/drug effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
Collapse
Affiliation(s)
- Alexander Biedermann
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University (OVGU) Magdeburg, Magdeburg
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of athology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen
| | | | - Johannes Berges
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich
| | - Sarah Altmeyer
- Medizinische Klinik I, Saarland University Medical School, Homburg/Saar
| | | | | | | | - Stefan Haskamp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Fabian Beier
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Medical School, Aachen
| | | | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, GER
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Simone Bertz
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Benedikt Jacobs
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen.
| |
Collapse
|
3
|
Qin J, Zhang Z, Cui H, Yang J, Liu A. Biological characteristics and immune responses of NK Cells in commonly used experimental mouse models. Front Immunol 2024; 15:1478323. [PMID: 39628473 PMCID: PMC11611892 DOI: 10.3389/fimmu.2024.1478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The biology of natural killer (NK) cells in commonly used mouse models is discussed in this review, along with their crucial function in a variety of immunological responses. It has been demonstrated that the formation, maturation, subtype variety, and immunological recognition mechanisms of NK cells from various mice strains exhibit notable differences. These variations shed light on the intricacy of NK cell function and offer crucial information regarding their possible uses in treating human illnesses. The application of flow cytometry in mouse NK cell research is also covered in the article. Improved knowledge of the biology of NK cells across species may facilitate the development of new NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Jingwen Qin
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhaokai Zhang
- Department of General Surgery II, Cenxi People’s Hospital, Wuzhou, Guangxi, China
| | - Haopeng Cui
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinhua Yang
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Aiqun Liu
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
4
|
Bushnell GG, Sharma D, Wilmot HC, Zheng M, Fashina TD, Hutchens CM, Osipov S, Burness M, Wicha MS. Natural Killer Cell Regulation of Breast Cancer Stem Cells Mediates Metastatic Dormancy. Cancer Res 2024; 84:3337-3353. [PMID: 39106452 PMCID: PMC11474167 DOI: 10.1158/0008-5472.can-24-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Patients with breast cancer with estrogen receptor-positive tumors face a constant risk of disease recurrence for the remainder of their lives. Dormant tumor cells residing in tissues such as the bone marrow may generate clinically significant metastases many years after initial diagnosis. Previous studies suggest that dormant cancer cells display "stem-like" properties (cancer stem cell, CSC), which may be regulated by the immune system. To elucidate the role of the immune system in controlling dormancy and its escape, we studied dormancy in immunocompetent, syngeneic mouse breast cancer models. Three mouse breast cancer cell lines, PyMT, Met1, and D2.0R, contained CSCs that displayed short- and long-term metastatic dormancy in vivo, which was dependent on the host immune system. Each model was regulated by different components of the immune system. Natural killer (NK) cells were key for the metastatic dormancy phenotype in D2.0R cells. Quiescent D2.0R CSCs were resistant to NK cell cytotoxicity, whereas proliferative CSCs were sensitive. Resistance to NK cell cytotoxicity was mediated, in part, by the expression of BACH1 and SOX2 transcription factors. Expression of STING and STING targets was decreased in quiescent CSCs, and the STING agonist MSA-2 enhanced NK cell killing. Collectively, these findings demonstrate the role of immune regulation of breast tumor dormancy and highlight the importance of utilizing immunocompetent models to study this phenomenon. Significance: The immune system controls disseminated breast cancer cells during disease latency, highlighting the need to utilize immunocompetent models to identify strategies for targeting dormant cancer cells and reducing metastatic recurrence. See related commentary by Cackowski and Korkaya, p. 3319.
Collapse
Affiliation(s)
- Grace G. Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Deeksha Sharma
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Henry C. Wilmot
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Michelle Zheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | | | - Chloe M. Hutchens
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Samuel Osipov
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Monika Burness
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
6
|
Singh RK, Jones RJ, Shirazi F, Qin L, Zou J, Hong S, Wang H, Lee HC, Patel KK, Wan J, Choudhary RK, Kuiatse I, Pahl A, Orlowski RZ. Novel Anti-B-cell Maturation Antigen Alpha-Amanitin Antibody-drug Conjugate HDP-101 Shows Superior Activity to Belantamab Mafodotin and Enhanced Efficacy in Deletion 17p Myeloma Models. RESEARCH SQUARE 2024:rs.3.rs-3843028. [PMID: 38260385 PMCID: PMC10802748 DOI: 10.21203/rs.3.rs-3843028/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
B-cell maturation antigen (BCMA) plays a pathobiologic role in myeloma and is a validated target with five BCMA-specific therapeutics having been approved for relapsed/refractory disease. However, these drugs are not curative, and responses are inferior in patients with molecularly-defined high-risk disease, including those with deletion 17p (del17p) involving the tumor suppressor TP53, supporting the need for further drug development. Del17p has been associated with reduced copy number and gene expression of RNA polymerase II subunit alpha (POLR2A) in other tumor types. We therefore studied the possibility that HDP-101, an anti-BCMA antibody drug conjugate (ADC) with the POLR2A poison α-amanitin could be an attractive agent in myeloma, especially with del17p. HDP-101 reduced viability in myeloma cell lines representing different molecular disease subtypes, and overcame adhesion-mediated and both conventional and novel drug resistance. After confirming that del17p is associated with reduced POLR2A levels in publicly available myeloma patient databases, we engineered TP53 wild-type cells with a TP53 knockout (KO), POLR2A knockdown (KD), or both, the latter to mimic del17p. HDP-101 showed potent anti-myeloma activity against all tested cell lines, and exerted enhanced efficacy against POLR2A KD and dual TP53 KO/POLR2A KD cells. Mechanistic studies showed HDP-101 up-regulated the unfolded protein response, activated apoptosis, and induced immunogenic cell death. Notably, HDP-101 impacted CD138-positive but not-negative primary cells, showed potent efficacy against aldehyde dehydrogenase-positive clonogenic cells, and eradicated myeloma in an in vivo cell line-derived xenograft (CDX). Interestingly, in the CDX model, prior treatment with HDP-101 precluded subsequent engraftment on tumor cell line rechallenge in a manner that appeared to be dependent in part on natural killer cells and macrophages. Finally, HDP-101 was superior to the BCMA-targeted ADC belantamab mafodotin against cell lines and primary myeloma cells in vitro, and in an in vivo CDX. Together, the data support the rationale for translation of HDP-101 to the clinic, where it is now undergoing Phase I trials, and suggest that it could emerge as a more potent ADC for myeloma with especially interesting activity against the high-risk del17p myeloma subtype.
Collapse
Affiliation(s)
| | | | | | - Li Qin
- The University of Texas MD Anderson Cancer Center
| | - Jianxuan Zou
- The University of Texas MD Anderson Cancer Center
| | - Samuel Hong
- The University of Texas MD Anderson Cancer Center
| | - Hua Wang
- The University of Texas MD Anderson Cancer Center
| | - Hans C Lee
- The University of Texas MD Anderson Cancer Center
| | | | - Jie Wan
- The University of Texas MD Anderson Cancer Center
| | | | | | | | | |
Collapse
|
7
|
Abstract
Human immune system mice, also referred to as humanized mice, are a major research tool for the in vivo study of human immune system function. Upon reconstitution with human hematopoietic stem cells, all major human leukocyte populations develop in immunodeficient mice and can be detected in peripheral blood as well as in lymphatic and nonlymphatic tissue. This includes human macrophages that are intrinsically difficult to study from humans due to their organ-resident nature. In the following chapter, we provide a detailed protocol for generation of human immune system mice. We suggest that these mice are a suitable model to study human macrophage function in vivo.
Collapse
Affiliation(s)
- Leonie Voss
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carmen Reitinger
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Bushnell GG, Sharma D, Wilmot HC, Zheng M, Fashina TD, Hutchens CM, Osipov S, Wicha MS. Natural killer cell regulation of breast cancer stem cells mediates metastatic dormancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560493. [PMID: 37873211 PMCID: PMC10592904 DOI: 10.1101/2023.10.02.560493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Breast cancer patients with estrogen receptor positive tumors face a constant risk of disease recurrence for the remainder of their lives. Dormant tumor cells residing in tissues such as the bone marrow may generate clinically significant metastases many years after initial diagnosis. Previous studies suggest that dormant cells display "stem like" properties (CSCs), which may be regulated by the immune system. Although many studies have examined tumor cell intrinsic characteristics of dormancy, the role of the immune system in controlling dormancy and its escape is not well understood. This scientific gap is due, in part, to a lack of immunocompetent mouse models of breast cancer dormancy with many studies involving human xenografts in immunodeficient mice. To overcome this limitation, we studied dormancy in immunocompetent, syngeneic mouse breast cancer models. We find that PyMT, Met-1 and D2.0R cell lines contain CSCs that display both short- and long-term metastatic dormancy in vivo, which is dependent on the host immune system. Natural killer cells were key for the metastatic dormancy phenotype observed for D2.0R and the role of NK cells in regulating CSCs was further investigated.Quiescent D2.0R CSC are resistant to NK cytotoxicity, while proliferative D2.0R CSC were sensitive to NK cytotoxicity both in vitro and in vivo. This resistance was mediated, in part, by the expression of Bach1 and Sox2 transcription factors. NK killing was enhanced by the STING agonist MSA-2. Collectively, our findings demonstrate the important role of immune regulation of breast tumor dormancy and highlight the importance of utilizing immunocompetent models to study this phenomenon.
Collapse
|
9
|
Bourel C, Mullins-Dansereau V, Al Khaldi M, Chabot-Roy G, Lombard-Vadnais F, Lesage S. Uncoupling of Natural Killer cell functional maturation and cytolytic function in NOD mice. Immunol Cell Biol 2023; 101:867-874. [PMID: 37536708 DOI: 10.1111/imcb.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
NK cells are innate immune cells that target infected and tumor cells. Mature NK (mNK) cells undergo functional maturation characterized by four distinct stages, during which they acquire their cytotoxic properties. mNK cells from non-obese diabetic (NOD) mice exhibit a defect in functional maturation and have impaired cytotoxic functions. Hence, we tested whether the impaired cytotoxic function observed in mNK cells from NOD mice can be explained by their defect in functional maturation. By comparing the function of mNK cells from B6, B6g7 and NOD mice, we show that the expression of granzyme B is severely impaired in mNK cells from NOD mice, agreeing with their inability to control tumor growth in vivo. The low level of granzyme B expression in mNK cells from NOD mice is found at all stages of functional maturation and is therefore independent of their functional maturation defect. Consequently, this study demonstrates that phenotypic functional maturation of mNK cells can be uncoupled from the acquisition of cytotoxic functions.
Collapse
Affiliation(s)
- Capucine Bourel
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Victor Mullins-Dansereau
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Maher Al Khaldi
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Chabot-Roy
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Leimbacher AC, Villiger P, Desboeufs N, Aboouf MA, Nanni M, Armbruster J, Ademi H, Flüchter P, Ruetten M, Gantenbein F, Haider TJ, Gassmann M, Thiersch M. Voluntary exercise does not always suppress lung cancer progression. iScience 2023; 26:107298. [PMID: 37520731 PMCID: PMC10374464 DOI: 10.1016/j.isci.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Physical exercise can lower lung cancer incidence. However, its effect on lung cancer progression is less understood. Studies on exercising mice have shown decreased ectopic lung cancer growth through the secretion of interleukin-6 from muscles and the recruitment of natural killer (NK) cells to tumors. We asked if exercise suppresses lung cancer in an orthotopic model also. Single-housed C57Bl/6 male mice in cages with running wheels were tail vein-injected with LLC1.1 lung cancer cells, and lung tumor nodules were analyzed. Exercise did not affect lung cancer. Therefore, we also tested the effect of exercise on a subcutaneous LLC1 tumor and a tail vein-injected B16F10 melanoma model. Except for one case of excessive exercise, tumor progression was not influenced. Moderately exercising mice did not increase IL-6 or recruit NK cells to the tumor. Our data suggest that the exercise dose may dictate how efficiently the immune system is stimulated and controls tumor progression.
Collapse
Affiliation(s)
- Aurelia C. Leimbacher
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Philipp Villiger
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Nina Desboeufs
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Monica Nanni
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Flüchter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- PathoVet AG, Pathology Diagnostic Laboratory, 8317 Tagelswangen ZH, Switzerland
| | - Felix Gantenbein
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, 8057 Zurich, Switzerland
| | - Thomas J. Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
Tóvári J, Vári-Mező D, Surguta SE, Ladányi A, Kigyós A, Cserepes M. Evolving Acquired Vemurafenib Resistance in a BRAF V600E Mutant Melanoma PDTX Model to Reveal New Potential Targets. Cells 2023; 12:1919. [PMID: 37508582 PMCID: PMC10377807 DOI: 10.3390/cells12141919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Malignant melanoma is challenging to treat, and metastatic cases need chemotherapy strategies. Targeted inhibition of commonly mutant BRAF V600E by inhibitors is efficient but eventually leads to resistance and progression in the vast majority of cases. Numerous studies investigated the mechanisms of resistance in melanoma cell lines, and an increasing number of in vivo or clinical data are accumulating. In most cases, bypassing BRAF and resulting reactivation of the MAPK signaling, as well as alternative PI3K-AKT signaling activation are reported. However, several unique changes were also shown. We developed and used a patient-derived tumor xenograft (PDTX) model to screen resistance evolution in mice in vivo, maintaining tumor heterogeneity. Our results showed no substantial activation of the canonical pathways; however, RNAseq and qPCR data revealed several altered genes, such as GPR39, CD27, SLC15A3, IFI27, PDGFA, and ABCB1. Surprisingly, p53 activity, leading to apoptotic cell death, was unchanged. The found biomarkers can confer resistance in a subset of melanoma patients via immune modulation, microenvironment changes, or drug elimination. Our resistance model can be further used in testing specific inhibitors that could be used in future drug development, and combination therapy testing that can overcome inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Diána Vári-Mező
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| | - Andrea Ladányi
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
- Department of Surgical and Molecular Pathology, National Institute of Oncology, 1122 Budapest, Hungary
| | | | - Mihály Cserepes
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
12
|
Hou Z, Lin J, Ma Y, Fang H, Wu Y, Chen Z, Lin X, Lu F, Wen S, Yu X, Huang H, Pan Y. Single-cell RNA sequencing revealed subclonal heterogeneity and gene signatures of gemcitabine sensitivity in pancreatic cancer. Front Pharmacol 2023; 14:1193791. [PMID: 37324492 PMCID: PMC10267405 DOI: 10.3389/fphar.2023.1193791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Resistance to gemcitabine is common and critically limits its therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC). Methods: We constructed 17 patient-derived xenograft (PDX) models from PDAC patient samples and identified the most notable responder to gemcitabine by screening the PDX sets in vivo. To analyze tumor evolution and microenvironmental changes pre- and post-chemotherapy, single-cell RNA sequencing (scRNA-seq) was performed. Results: ScRNA-seq revealed that gemcitabine promoted the expansion of subclones associated with drug resistance and recruited macrophages related to tumor progression and metastasis. We further investigated the particular drug-resistant subclone and established a gemcitabine sensitivity gene panel (GSGP) (SLC46A1, PCSK1N, KRT7, CAV2, and LDHA), dividing PDAC patients into two groups to predict the overall survival (OS) in The Cancer Genome Atlas (TCGA) training dataset. The signature was successfully validated in three independent datasets. We also found that 5-GSGP predicted the sensitivity to gemcitabine in PDAC patients in the TCGA training dataset who were treated with gemcitabine. Discussion and conclusion: Our study provides new insight into the natural selection of tumor cell subclones and remodeling of tumor microenvironment (TME) cells induced by gemcitabine. We revealed a specific drug resistance subclone, and based on the characteristics of this subclone, we constructed a GSGP that can robustly predict gemcitabine sensitivity and prognosis in pancreatic cancer, which provides a theoretical basis for individualized clinical treatment.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Ma
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haizhong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhijiang Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
13
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
14
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023; 14:1095388. [PMID: 36969176 PMCID: PMC10036357 DOI: 10.3389/fimmu.2023.1095388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Jiang
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Yanlu Xiong
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Jie Lei
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| |
Collapse
|