1
|
Yao J, Cheng M, Yang F. Calycosin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice through the miR-375-3p/ROCK2 Axis. J INVEST SURG 2023; 36:2211166. [PMID: 37400250 DOI: 10.1080/08941939.2023.2211166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 07/05/2023]
Abstract
Objective: Septic patients are especially vulnerable to acute lung injury (ALI). Calycosin (CAL) has various promising pharmacological activities. This paper aims to expound on the role of CAL in mice with sepsis-induced ALI and the associated mechanisms.Methods: Mouse models of sepsis-induced ALI were established using lipopolysaccharide (LPS). Pulmonary histopathological changes were observed by HE staining. Cell apoptosis was assessed by TUNEL staining. Pulmonary edema was evaluated by measuring wet/dry weight. Bronchoalveolar lavage fluid (BALF) was collected to count inflammatory cells. In vitro LPS models were established using MLE-12 cells. miR-375-3p expression was determined by RT-qPCR. Cell viability and apoptosis were assessed by MTT assay and flow cytometry. Levels of inflammatory cytokines were determined by ELISA. The target relationship between miR-375-3p and ROCK2 was analyzed by the dual-luciferase assay. ROCK2 protein level was determined by Western blot.Results: miR-375-3p was weakly-expressed in mice with sepsis-induced ALI, and CAL treatment elevated miR-375-3p expression. CAL treatment mitigated pulmonary tissue damage and edema, decreased apoptosis and inflammatory cells, downregulated levels of pro-inflammatory cytokines, and upregulated levels of anti-inflammatory cytokines in mice with sepsis-induced ALI. CAL treatment increased MLE-12 cell viability and decreased apoptosis and inflammation in MLE-12 cells. Inhibition of miR-375-3p partially abrogated CAL-mediated protective action on MLE-12 cells. miR-375-3p attenuated LPS-induced MLE-12 cell injury by targeting ROCK2.Conclusion: CAL upregulates miR-375-3p to target ROCK2, thus protecting against sepsis-induced ALI in mice.
Collapse
Affiliation(s)
- Jie Yao
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Mingfeng Cheng
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Fan Yang
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
3
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
4
|
Luo J, Liu H, Hua S, Song L. The Correlation of PM2.5 Exposure with Acute Attack and Steroid Sensitivity in Asthma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2756147. [PMID: 36033576 PMCID: PMC9410784 DOI: 10.1155/2022/2756147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Bronchial asthma is a common chronic inflammatory disease of the respiratory system. Asthma primarily manifests in reversible airflow limitation and airway inflammation, airway remodeling, and persistent airway hyperresponsiveness. PM2.5, also known as fine particulate matter, is the main component of air pollution and refers to particulate matter with an aerodynamic diameter of ≤2.5 μm. PM2.5 can be suspended in the air for an extensive time and, in addition, can contain or adsorb heavy metals, toxic gases, polycyclic aromatic hydrocarbons, bacterial viruses, and other harmful substances. Epidemiological studies have demonstrated that, in addition to increasing the incidence of asthma, PM2.5 exposure results in a significant increase in the incidence of hospital visits and deaths due to acute asthma attacks. Furthermore, PM2.5 was reported to induce glucocorticoid resistance in asthmatic individuals. Although various countries have implemented strict control measures, due to the wide range of PM2.5 sources, complex components, and unknown pathogenic mechanisms involving the atmosphere, environment, chemistry, and toxicology, PM2.5 damage to human health still cannot be effectively controlled. In this present review, we summarized the current knowledge base regarding the relationship between PM2.5 toxicity and the onset, acute attack prevalence, and steroid sensitivity in asthma.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Han Liu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Lysionotin Induces Ferroptosis to Suppress Development of Colorectal Cancer via Promoting Nrf2 Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1366957. [PMID: 35993016 PMCID: PMC9385354 DOI: 10.1155/2022/1366957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
Extensive use of substances derived from natural sources has been documented in the treatment of colorectal cancer (CRC). Lysionotin (Lys) is a flavonoid present in the flowers and leaves of Gesneriaceae family plants. Despite its various pharmacological properties, which include neuroprotective, pro, antimalarial, and anticancer effects, the therapeutic advantages of Lys for CRC remain uncertain. In this present study, we demonstrated that Lys treatment successfully inhibited cell proliferation, migration, and invasion in HCT116 and SW480 CRC cells in vitro. Intriguingly, significant ferroptosis and reactive oxygen species (ROS) accumulation in CRC cells were induced by Lys treatment, whereas antagonism of ferroptosis by Liproxstatin-1 (Lip1) pretreatment retarded the anti-CRC effects of Lys. In addition, Lys reduced the amount of Nrf2 protein in CRC cells by increasing the rate at which it is degraded. Overexpression of Nrf2 rescued Lys reduced ferroptosis, suggesting the Nrf2 signaling is a crucial determinant of whether Lys induces ferroptosis in CRC cells. We also revealed that Lys suppressed tumor growth in vivo without obvious adverse effects on the main organs of mice. In conclusion, our results discovered that Lys treatment induced ferroptosis to exert antitumor effects in HCT116 and SW480 CRC cells by modulating Nrf2 signaling, providing a potential therapeutic approach for the prevention of colorectal cancer.
Collapse
|
6
|
Inhalation of Salvianolic Acid B Prevents Fine Particulate Matter-Induced Acute Airway Inflammation and Oxidative Stress by Downregulating the LTR4/MyD88/NLRP3 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5044356. [PMID: 35795853 PMCID: PMC9252752 DOI: 10.1155/2022/5044356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/12/2021] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Air pollution is a serious threat to human health. Inhaled fine particulate matter (PM2.5) can cause inflammation and oxidative stress in the airway; however, the mechanisms responsible for this effect have yet to be elucidated and there are no specific drugs that can prevent and treat this condition. In the present study, we investigated the effects and mechanisms underlying the inhalation of salvianolic acid B (SalB) on PM2.5-induced airway inflammation and oxidative stress. We used a PM2.5-induced mouse model of airway inflammation and oxidative stress, along with a human epithelial cell model, to study the action and mechanisms of SalB by histopathology, real-time PCR, enzyme-linked immunosorbent assays, flow cytometry, and western blotting. SalB treatment markedly inhibited the PM2.5-induced increase in the number of neutrophils and macrophages in bronchoalveolar lavage fluid, improved the infiltration of inflammatory cells in lung tissue, and reduced injury in the alveolar septum. Furthermore, SalB reduced the mRNA and protein levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, keratinocyte (KC), and transforming growth factor- (TGF-) β1 in lung tissues and the protein levels of IL-1β, TNF-α, IL-8, IL-6, and TGF-β1 in human epithelial cells. SalB treatment also significantly prevented the reduction of levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase in lung tissue and reduced the levels of reactive oxygen species in human epithelial cells induced by PM2.5. Furthermore, SalB and the myeloid differentiation primary response 88 (MyD88) inhibitor ST2825 inhibited the expression levels of toll-like receptor 4 (TLR4), MyD88, tumor necrosis factor receptor associated factor 6 (TRAF-6), and NOD-like receptor protein 3 (NLRP3), as well as the phosphorylation of downstream Erk1/2 and P38 in lung tissue and epithelial cells. SalB protects against PM2.5-induced airway inflammation and oxidative stress in a manner that is associated with the inhibition of the TLR4/MyD88/TRAF-6/NLRP3 pathway and downstream signals ERK1/2 and P38.
Collapse
|
7
|
Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4243210. [PMID: 35782063 PMCID: PMC9242816 DOI: 10.1155/2022/4243210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Amyloid-beta (Aβ) peptide induces neurotoxicity through oxidative stress and inflammatory response. Brain deposition of a large amount of amyloid-beta (Aβ), in particular Aβ42, promotes the development of Alzheimer’s disease (AD). Maackiain is extracted from traditional Chinese medicine peony root and possesses antioxidative, antiosteoporosis, antitumor, and immunoregulatory effects. Whether Maackiain can reduce neurotoxicity caused by Aβ accumulation remains elusive. Herein, we found that Maackiain downregulated Aβ42-induced cell injury and apoptosis in PC12 cells. Moreover, Maackiain prevented Aβ42 stimulation-induced generation of oxidative stress and reduced Aβ42-caused impairment of mitochondrial membrane potential in PC12 cells. Maackiain increased the superoxide dismutase activity and decreased malondialdehyde content that was induced by Aβ42. Mechanistic studies showed that Maackiain increased intranuclear Nrf2 expression. Consistently, Nrf2 silencing by RNA interference weakened the protective role of Maackiain against Aβ exposure. In addition, calphostin C, a specific antagonist of protein kinase C, attenuated the promoting effects of Maackiain on Nrf2 nuclear translocation. Moreover, calphostin C attenuated the antioxidant and anti-inflammatory capabilities of Maackiain in PC12 cells. Collectively, Maackiain promoted Nrf2 activation through the PKC signaling pathway, thus preventing PC12 cells from Aβ-induced oxidative stress and cell injury, suggesting that Maackiain is a potential drug for AD treatment.
Collapse
|
8
|
miR-338-3p Plays a Significant Role in Casticin-Induced Suppression of Acute Myeloid Leukemia via Targeting PI3K/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214130. [PMID: 35765408 PMCID: PMC9233736 DOI: 10.1155/2022/9214130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Objective Casticin is generally used in traditional herbal medicine for its anti-inflammatory and anticarcinogenic pharmacological properties. Also, microRNAs are indispensable oncogenes or cancer suppressors being dysregulated in various diseases. In this study, we aimed to elucidate the mechanisms underlying effects of casticin on the progression of acute myeloid leukemia (AML). Methods CCK-8 and flow cytometry were utilized to measure the proliferation and apoptosis of AML cell lines, respectively, after treatment with different concentrations of casticin. The alteration of several microRNA expressions in response to casticin treatment was detected by performing qRT-PCR, and the activity of PI3K/Akt pathways was evaluated through immunoblotting. Afterwards, the potential target gene of miR-338-3p was investigated by dual-luciferase reporter assay. In order to evaluate the role of miR-338-3p in the casticin-induced cellular phenotype changes, AML cells were transfected with miR-338-3p mimics or inhibitor and then subjected to proliferation and apoptosis analysis. Finally, a mouse xenograft model system was employed to investigate the role of casticin in AML progression in vivo. Results Suppressed cellular proliferation and enhanced apoptosis were observed in HL-60 and THP-1 cells after exposure to casticin, accompanied by remarkable upregulation of the miR-338-3p expression as well as a decline in the phosphorylation of PI3K and Akt proteins. RUNX2 was identified as a direct target molecular of miR-338-3p, which might account for the findings that miR-338-3p knockdown enhanced the PI3K/Akt pathway activity, whereas the miR-338-3p overexpression inactivated this signaling pathway. In addition, the inhibition of the miR-338-3p expression attenuated severe cell apoptosis and suppressions of PI3K/Akt pathway induced by casticin. Furthermore, casticin treatment retarded tumor growth rate in mouse models, whilst elevating miR-338 expression and repressing the activity of PI3K/Akt pathway in vivo. However, miR-338-3p depletion could also abolish the phenotypic alterations caused by casticin treatment. Conclusion Casticin promotes AML cell apoptosis but inhibits AML cell proliferation in vitro and tumor growth in vivo by upregulating miR-338-3p, which targets RUNX2 and thereafter inactivates PI3K-Akt signaling pathway. Our results provide insights into the mechanisms underlying the action of casticin in the control of AML progression.
Collapse
|
9
|
Effects of Traditional Chinese Medicine Anticancer Decoction Combined with Basic Chemotherapy and Nursing Intervention on Oral Cancer Patients after Surgery and Its Effect on Tumor Markers and Immune Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6341381. [PMID: 35402612 PMCID: PMC8986392 DOI: 10.1155/2022/6341381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To prospectively study the application effect of traditional Chinese medicine (TCM) anticancer decoction with basic chemotherapy and nursing intervention on oral cancer patients after surgery and the effect on tumor markers and immune function. Methods Eighty-four postoperative oral cancer patients in our hospital from May 2017 to February 2019 were selected and divided into observation group (42 cases) and control group (42 cases). The control group was treated with basic chemotherapy combined with basic nursing care, and the observation group was treated with TCM anticancer decoction and comprehensive nursing intervention on the basis of the control group. The clinical efficacy, the occurrence of adverse reactions, the satisfaction of nursing care, and the two-year cumulative survival rate of the two groups were compared. The immune function, tumor marker level, VAS score, QoR40 score, and survival quality score of the two groups were compared before and after nursing care. Results The total clinical treatment efficiency of the observation group (88.10%) was significantly higher than that of the control group (69.05%), and the differences between the two groups in oral cleanliness, aspiration frequency, and oral comfort were statistically significant (P < 0.05). The differences in the occurrence of halitosis, oral fungal infection, leukopenia, gastrointestinal reaction, and fever in the observation group were statistically significant compared with the control group (P < 0.05). The nursing satisfaction rate in the observation group (95.24%) was significantly higher than that in the control group (78.57%). The two-year cumulative survival rate of the observation group (92.86%) was significantly higher than that of the control group (73.81%). After nursing care, CD4+, CD4+/CD8+, VAS scores, QoR40 scores, and quality of survival scores in both groups all increased, and CD8+, CD56+, CEA level, NSE level, and CA19-9 level all decreased (all P < 0.05). Conclusion The clinical efficacy of TCM anticancer decoction with basic chemotherapy and nursing interventions in the treatment of postoperative oral cancer patients was remarkable, which could significantly improve patients' oral cleanliness and comfort, reduce the frequency of sputum aspiration, improve patients' immunity, reduce tumor marker levels, inhibit tumor activity, improve patients' nursing satisfaction, further improve patients' treatment compliance, reduce patients' pain level, improve patients' survival quality, and prolong patients' survival time with high safety. It could be used as a theoretical basis for subsequent clinical research.
Collapse
|
10
|
Network Pharmacology and Molecular Docking Verify the Mechanism of Qinshi Simiao San in Treating Chronic Prostatitis in the Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7098121. [PMID: 35069766 PMCID: PMC8769824 DOI: 10.1155/2022/7098121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Background Using network pharmacology and molecular docking, this study aimed to explore the active pharmaceutical ingredients (APIs) and molecular mechanism of Qinshi Simiao San (QSSMS) in the treatment of chronic prostatitis (CP) and verify our findings in the rat model. Methods The APIs of QSSMS and the common targets of QSSMS and CP were screened from the TCMSP database. The STRING database and Cytoscape software were used to construct the network graph. The enriched GO and KEGG pathways were displayed by David software and R software. Molecular docking was performed to visualize key components and target genes. In addition, the rats model of CP was established to verify the molecular mechanism of QSSMS. Results Network pharmacology showed that the APIs of QSSMS mainly included quercetin, kaempferol, formononetin, isorhamnetin, and calycosin. QSSMS alleviated CP mainly through the negative regulation of the apoptotic process, oxidation-reduction process, inflammatory response, and immune response. Molecular docking showed that the APIs could bind to the corresponding targets. QSSMS repaired the pathological damage of prostate tissue, upregulated the expression of oxidative stress scavenging enzymes CAT and SOD, and downregulated the peroxidative product MDA, inflammatory factors IL-1β, IL-6, TNF-α, COX-2, PGE2, and NGF, and immune factors IgG and SIgA. Conclusion The APIs in QSSMS may inhibit inflammation in the rat CP model by regulating immune and oxidative stress.
Collapse
|