1
|
Zhang Z, Huang J, Zhu X, Deng B, Zhao H, Wang H, Liu D. Ginsenoside Rg1 alleviated experimental colitis in obesity mice by regulating memory follicular T cells via Bcl-6/Blimp-1 pathway. J Nutr Biochem 2025; 140:109880. [PMID: 40021065 DOI: 10.1016/j.jnutbio.2025.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
The pathological mechanisms of ulcerative colitis (UC) are closely related with abnormal memory follicular helper T (mTfh) cell subsets and the Bcl-6/Blimp-1 signaling pathway. Ginsenoside Rg1 (G-Rg1) has been confirmed to exhibit therapeutic effects in obese mice with dextran sulfate sodium (DSS)-induced ulcerative colitis. The aim of this study was to investigate the mechanism of action of G-Rg1 in obese mice with UC by observing mTfh cell subsets and the Bcl-6/Blimp-1 signaling pathway. Obese mice with UC were treated with G-Rg1 at a dose of 200 mg/kg. Disease activity was assessed macroscopically and microscopically, and cytokine levels were measured using enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to analyze mTfh cell subsets, and Western blotting to assess protein expression related to the Bcl-6/Blimp-1 pathway. qPCR was used to detect the expression of Bcl-6/Blimp-1, and immunofluorescence was utilized to compare Bcl-6/Blimp-1 expression between different groups. G-Rg1 treatment ameliorated the symptoms of DSS-induced colitis, alleviated the pathological changes in the colonic tissue of obese mice with ulcerative colitis, and reduced the levels of inflammatory cytokines in these mice. Furthermore, flow cytometry analysis indicated that G-Rg1 modulated the balanceof mTfh cells subsets by increasing central memory Tfh (cmTfh) cells and decreasing effector memory Tfh (emTfh) cells, thereby mitigating ulcerative colitis in obese mice. qPCR results revealed the significant upregulation of Bcl-6 and the downregulation of Blimp-1 expression in the DSS group, which was effectively reversed by G-Rg1 treatment. These findings were further confirmed by Western blot and immunofluorescence assays. Collectively, the qPCR, Western blot, and immunofluorescence results demonstrated the pivotal role of the Bcl-6/Blimp-1 signaling pathway in the therapeutic process of G-Rg1 for ulcerative colitis in obese mice. Ginsenoside Rg1 alleviates experimental colitis in obese mice by modulating the proportion of mTfh cell subsets via the Bcl-6/Blimp-1 signaling pathway.
Collapse
Affiliation(s)
- Zeyun Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bailin Deng
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Haiyan Wang
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330052, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
2
|
Yang Y, Li J, Wang X, Ma J. Causal relationship between hypothyroidism and ulcerative colitis: a bidirectional Mendelian randomization study. BMC Gastroenterol 2024; 24:385. [PMID: 39478467 PMCID: PMC11526713 DOI: 10.1186/s12876-024-03461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) and Hashimoto's thyroiditis frequently cooccur in patients with multiple autoimmune conditions, but the specific association between UC and hypothyroidism is unknown. We used Mendelian randomization (MR) methods to determine the causal relationship between UC and hypothyroidism. METHODS We obtained single nucleotide polymorphisms (SNPs) related to ulcerative colitis (UC) and hypothyroidism from genome-wide association studies (GWAS) available in the public database of the Integrated Epidemiology Unit (IEU). To assess the causal relationship between UC and hypothyroidism, we employed MR-Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode methods. Sensitivity analyses were performed using Cochran's Q test, the horizontal pleiotropy test, and the leave-one-out (LOO) method to assess the reliability of the MR data. The genes corresponding to instrumental variables (IVs) were subjected to Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of the Genome (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) analysis to explore the mechanisms behind the causal relationships at the gene level. RESULTS Forward MR analysis indicated that hypothyroidism was associated with an increased risk of UC (IVW: P = 0.02, OR = 9.71, 95% confidence interval (CI) = 1.36-69.46). In contrast, reverse MR did not demonstrate a causal relationship between UC and hypothyroidism (IVW: P = 0.53). Sensitivity analysis proved the reliability of the results. The PPI network revealed CD247, CD80, and STAT4 as central genes. GO and KEGG analyses revealed significant enrichment of the T cell, gamma interferon (IFN-γ), and programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathways. CONCLUSION Hypothyroidism was a risk factor for UC. The balance of T-cell differentiation played an important role in the process of hypothyroidism-induced UC, and IL-21 might be the key to finding a cure. Enrichment of PD-1/PD-L1 might attenuate inflammation by suppressing the immune action of T cells.
Collapse
Affiliation(s)
- Yumeng Yang
- Xi'an Medical University, Xi'an, 710021, Shaanxi, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianhui Li
- Air force medical center, PLA, Beijing, 100142, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jing Ma
- Department of Gastroenterology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
3
|
Li Y, Ramírez-Suástegui C, Harris R, Castañeda-Castro FE, Ascui G, Pérez-Jeldres T, Diaz A, Morong C, Giles DA, Chai J, Seumois G, Sanchez-Elsner T, Cummings F, Kronenberg M, Vijayanand P. Stem-like T cells are associated with the pathogenesis of ulcerative colitis in humans. Nat Immunol 2024; 25:1231-1244. [PMID: 38898157 PMCID: PMC11800318 DOI: 10.1038/s41590-024-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/01/2024] [Indexed: 06/21/2024]
Abstract
To understand the role of T cells in the pathogenesis of ulcerative colitis (UC), we analyzed colonic T cells isolated from patients with UC and controls. Here we identified colonic CD4+ and CD8+ T lymphocyte subsets with gene expression profiles resembling stem-like progenitors, previously reported in several mouse models of autoimmune disease. Stem-like T cells were increased in inflamed areas compared to non-inflamed regions from the same patients. Furthermore, TCR sequence analysis indicated stem-like T cells were clonally related to proinflammatory T cells, suggesting their involvement in sustaining effectors that drive inflammation. Using an adoptive transfer colitis model in mice, we demonstrated that CD4+ T cells deficient in either BCL-6 or TCF1, transcription factors that promote T cell stemness, had decreased colon T cells and diminished pathogenicity. Our results establish a strong association between stem-like T cell populations and UC pathogenesis, highlighting the potential of targeting this population to improve clinical outcomes.
Collapse
Affiliation(s)
- Yingcong Li
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Richard Harris
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Gabriel Ascui
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Tamara Pérez-Jeldres
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Hospital San Borja Arriarán, Santiago, Chile
| | - Alejandro Diaz
- Department of Gastroenterology, Hospital San Borja Arriarán, Santiago, Chile
| | - Carla Morong
- Department of Gastroenterology, Hospital San Borja Arriarán, Santiago, Chile
| | - Daniel A Giles
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Lineage Therapeutics, Carlsbad, CA, USA
| | - Jiani Chai
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pathology, Albert Einstein Medical College, New York, NY, USA
| | | | - Tilman Sanchez-Elsner
- Department of Gastroenterology, University Hospital Southampton NHS FT, Southampton, UK
| | - Fraser Cummings
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Gastroenterology, University Hospital Southampton NHS FT, Southampton, UK
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Medicine, University of California, San Diego, San Diego, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Peng K, Xia S, Xiao S, Zhang M, Liao J, Yu Q. Kuijie decoction ameliorates ulcerative colitis by affecting intestinal barrier functions, gut microbiota, metabolic pathways and Treg/Th17 balance in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117316. [PMID: 37852335 DOI: 10.1016/j.jep.2023.117316] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Currently, the clinical treatment is limited and difficult to achieve satisfactory results for ulcerative colitis (UC). The role of traditional Chinese medicine (TCM) in the treatment of UC is very complex. Kuijie decoction (KJD) as a classic TCM, is widely used in the clinical treatment of UC, but the mechanism of its action is still unclear. AIM OF THE STUDY This study is to investigate the protective effects of KJD on UC and the underlying mechanisms. MATERIALS AND METHODS The experimental model of UC was induced by DSS, and KJD was introduced into the model at the same time. Clinical symptoms, including the body weight, colon length and colon histopathological, were used to measure the severity of colitis. The expression of inflammatory cytokines and tight junction proteins was quantified. The effect of KJD on intestinal flora and intestinal metabolism was determined by 16S rRNA and untargeted metabolomics analysis, respectively. The proportion of Th17 cells and Tregs in the spleen was examined by flow cytometry. RESULTS Mice treated with KJD showed significantly alleviated clinical symptoms and histological damage, such as more body weight gain, lower disease activity index (DAI) score, and longer colon length. The administration of KJD also led to the down-regulation of inflammatory mediators, upregulation of the expression of ZO-1, occludin and decreased claudin-2, as well as altered microbiota composition against DSS challenges (especially an increase of Lachnospiraceae). KJD enhanced the percentage of Treg cells but decreased the proportion of Th17 cells to maintain intestinal homeostasis by improving gut microbiota metabolism. CONCLUSIONS In summary, KJD maintained intestinal epithelial homeostasis by regulating epithelial barrier function, intestinal flora, and restoring Th17/Treg balance. KJD has the potential to be a Chinese medicine treatment for UC.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Suhong Xia
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Mingyu Zhang
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Jiazhi Liao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| |
Collapse
|
5
|
Tian Y, Zeng Q, Cheng Y, Wang XH, Cao D, Yeung WSB, Liu Q, Duan YG, Yao YQ. Follicular helper T lymphocytes in the endometria of patients with reproductive failure: Association with pregnancy outcomes and inflammatory status of the endometria. Am J Reprod Immunol 2023:e13708. [PMID: 37095737 DOI: 10.1111/aji.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
PROBLEM The phenotypes and functions of B and CD4+ T-helper cell subsets during chronic inflammation of the endometria remain largely unexplored. This study aimed to investigate the characteristics and functions of follicular helper T (Tfh) cells to understand the pathological mechanisms of chronic endometritis (CE). METHOD OF STUDY Eighty patients who underwent hysteroscopic and histopathological examinations for CE were divided into three groups-those with positive results for hysteroscopy and CD138 staining (DP), negative results for hysteroscopy but positive CD138 staining (SP), and negative results for hysteroscopy and CD138 staining (DN). The phenotypes of B cells and CD4+ T-cell subsets were analyzed using flow cytometry. RESULTS CD38+ and CD138+ cells were mainly expressed in the non-leukocyte population of the endometria, and the endometrial CD19+ CD138+ B cells were fewer than the CD3+ CD138+ T cells. The percentage of Tfh cells increased with chronic inflammation in the endometria. Additionally, the elevated percentage of Tfh cells correlated with the number of miscarriages. CONCLUSIONS CD4+ T cells, particularly Tfh cells, may be critical in chronic endometrial inflammation and affect its microenvironment, thereby regulating endometrial receptivity, compared to B cells.
Collapse
Affiliation(s)
- Ye Tian
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Chinese PLA General Hospital, Beijing, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiao-Hui Wang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - William Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Qingzhi Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yuan-Qing Yao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Chinese PLA General Hospital, Beijing, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
8
|
Liu T, Liu Y, Liu CX, Jiang YM. CXCL13 is elevated in inflammatory bowel disease in mice and humans and is implicated in disease pathogenesis. Front Immunol 2022; 13:997862. [PMID: 36172372 PMCID: PMC9510369 DOI: 10.3389/fimmu.2022.997862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
CXCL13 is a chemokine that is widely involved in the pathogenesis of autoimmune diseases, tumors and inflammatory diseases. In this study, we investigate the role of CXCL13 in the pathogenesis of inflammatory bowel disease using both clinical specimens and animal models. We found that the serum CXCL13 concentration in IBD patients was significantly higher than that in healthy controls, and correlated with that of CRP, neutrophils counts and hemoglobin. The increase of CXCL13 in IBD patients might be related to the significant decrease of circulating CD4+CXCR5+ T cells, the increase of CD19+CD5+ B cells and the enhancement of humoral immunity. In mice colitis model, we also found elevated levels of CXCL13 in colon tissue. Cxcl13-/- knockout mice exhibited a mild, self-limiting form of disease. Additionally, CXCL13 deficiency restricted CD4+CXCR5+ T cells migration in mesenteric lymph nodes, resulting locally regulatory B cells increased in colon. In conclusion, our findings raise the possibility that CXCL13 plays a critical role in the pathogenesis of IBD. We believe that our findings will contribute to the understanding of the etiology, and that antagonizing or inhibiting CXCL13 may work as a potential adjunctive therapy strategy for patients with IBD.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-xi Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yong-mei Jiang, ; Chen-xi Liu,
| | - Yong-mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecolohic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Yong-mei Jiang, ; Chen-xi Liu,
| |
Collapse
|