1
|
Guo Z, Li J, Tan J, Sun S, Yan Q, Qin H. Exosomal miR-214-3p from senescent osteoblasts accelerates endothelial cell senescence. J Orthop Surg Res 2023; 18:391. [PMID: 37248458 DOI: 10.1186/s13018-023-03859-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Osteoporosis is a common systemic bone disease that leads to bone fragility and increases the risk of fracture. However, the pathogenesis of osteoporosis is considered to be highly complex. The exosomes can regulate the communication between cells. The specific mechanism of information transmission between osteoblasts and endothelial cells is worthy of further study. METHODS Exosomes were isolated and verified from senescent osteoblasts. The source and properties of exosomes were determined by TEM, particle size analysis and western blot. We established the co-culture model of endothelial cells and senescent osteoblasts. We used qRT-PCR to identify differentially expressed miRNAs. The functional changes of vascular endothelial cells were verified by cell transfection. β-Galactosidase cell senescence assay, Hoechst cell apoptosis assay, Ki67 cell proliferation assay and Transwell migration assay were used to verify cell senescence, apoptosis, proliferation, and migration. The potential target gene of miRNA was detected by bio-informatics pathway and double luciferase report. RESULTS We discovered that senescent osteoblasts could promote the senescence and apoptosis of vascular endothelial cells and inhibit their proliferation and migration. miR-214-3p was upregulated in senescent osteoblast-derived exosomes. miR-214-3p could effectively promote senescence and apoptosis of endothelial cells and inhibit proliferation and migration ability. L1CAM is a miR-214-3p direct target gene determined by bio-informatics and double luciferase report. CONCLUSIONS In conclusion, senescent osteoblast-derived exosomes can accelerate endothelial cell senescence through miR-214-3p/L1CAM pathway. Our experiments reveal the role of exosomes in the skeletal microenvironment.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Jing Li
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Jiyong Tan
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Sainan Sun
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Qing Yan
- Department of Physiology, Guangxi Medical University, Nanning, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Guigang City People's Hospital, No. 1 Zhongshan Middle Road, Gangbei District, Guigang, 537100, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
3
|
Wang Y, Liu T, Xiao W, Bai Y, Yue D, Feng L. Ox-LDL induced profound changes of small non-coding RNA in rat endothelial cells. Front Cardiovasc Med 2023; 10:1060719. [PMID: 36824457 PMCID: PMC9941181 DOI: 10.3389/fcvm.2023.1060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Atherosclerosis (AS) is a common cardiovascular disease with a high incidence rate and mortality. Endothelial cell injury and dysfunction are early markers of AS. Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of AS. Ox-LDL promotes endothelial cell apoptosis and induces inflammation and oxidative stress in endothelial cells. Small non-coding RNAs (sncRNAs) mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-associated RNAs. Studies have shown that small non-coding RNAs play an increasingly important role in diseases. Methods We used ox-LDL to treat rat endothelial cells to simulate endothelial cell injury. The expression changes of sncRNA were analyzed by small RNA high-throughput sequencing, and the expression changes of piRNA, snoRNA, snRNA, miRNA and repeat-associated RNA were verified by quantitative polymerase chain reaction (qPCR). Results Small RNA sequencing showed that 42 piRNAs were upregulated and 38 piRNAs were downregulated in endothelial cells treated with ox-LDL. PiRNA DQ614630 promoted the apoptosis of endothelial cells. The snoRNA analysis results showed that 80 snoRNAs were upregulated and 68 snoRNAs were downregulated in endothelial cells with ox-LDL treatment, and snoRNA ENSRNOT00000079032.1 inhibited the apoptosis of endothelial cells. For snRNA, we found that 20 snRNAs were upregulated and 26 snRNAs were downregulated in endothelial cells with ox-LDL treatment, and snRNA ENSRNOT00000081005.1 increased the apoptosis of endothelial cells. Analysis of miRNAs indicated that 106 miRNAs were upregulated and 91 miRNAs were downregulated in endothelial cells with ox-LDL treatment, and miRNA rno-novel-136-mature promoted the apoptosis of endothelial cells. The repeat RNA analysis results showed that 4 repeat RNAs were upregulated and 6 repeat RNAs were downregulated in endothelial cells treated with ox-LDL. Discussion This study first reported the expression changes of sncRNAs in endothelial cells with ox-LDL treatment, which provided new markers for the diagnosis and treatment of endothelial cell injury.
Collapse
Affiliation(s)
| | | | - Wenying Xiao
- Department of Cardiology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | |
Collapse
|
4
|
Pei J, Liu C, Yang Z, Lai Y, Zhang S, Guan T, Shen Y. Association of KATP variants with CMD and RAP in CAD patients with increased serum lipoprotein(a) levels. J Clin Endocrinol Metab 2022; 108:1061-1074. [PMID: 36469795 DOI: 10.1210/clinem/dgac709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT Refractory angina pectoris (RAP) is a specific subtype of coronary artery disease (CAD). Lipoprotein(a) [Lp(a)] and its induced coronary microvascular dysfunction (CMD) play an important role in pathogenesis of RAP, but its metabolism was mostly genetically determined. ATP-sensitive potassium channels (KATP) is involved in lipid metabolism and microvascular homeostasis, and becomes a promising target for the management of Lp(a) and its related RAP. OBJECTIVE To investigate associations of KATP variants with hyperlipoprotein(a)emia, CMD and RAP in CAD patients. DESIGN, PATIENTS, SETTINGS A total of 1,148 newly diagnosed CAD patients were prospectively selected, and divided into control [Lp(a) < 180 mg/dL] and case [Lp(a) ≥ 180 mg/dL, hyperlipoprotein(a)emia] group. METHODS 9 KATP variants were genotyped by MassARRAY system. The expression profile of exosome-derived microRNAs (exo-miRs) was identified by next-generation sequencing, and the expression levels of differentially expressed exo-miRs were evaluated by qRT-PCR in verification cohort. RESULTS Three KATP variants were associated with increased risk of hyperlipoprotein(a)emia in CAD patients as follows: rs2285676 (AA + GA genotype, adjusted OR = 1.44, 95% CI: 1.10-1.88, P = 0.008), rs1799858 (CC genotype, adjusted OR = 1.33, 95% CI: 1.03-1.73, P = 0.030), and rs141294036 (CC genotype, adjusted OR = 1.43, 95% CI: 1.10-1.87, P = 0.008). Only rs141294036 was associated with increased risk of CMD (CC genotype, adjusted OR = 1.62, 95% CI: 1.23-2.13, P = 0.001), and further with increased RAP risk (CC genotype, adjusted HR = 2.05, 95% CI: 1.22-3.43, P = 0.007) after median follow-up of 50.6-months. Between the two genotypes of rs141294036, 152 exo-miRs were significantly differentially expressed, only 10 exo-miRs (miR-7110-3p, miR-548az-5p, miR-214-3p, let-7i-5p, miR-218-5p, miR-128-3p, miR-378i, miR-625-3p, miR-128-1-5p and miR-3187-3p) were further confirmed in RAP patients with hyperlipoprotein(a)emia and CMD. CONCLUSION KATP rs141294036 may serve a potential genetic marker for hyperlipoprotein(a)emia, CMD and RAP in CAD patients.
Collapse
Affiliation(s)
- Jingxian Pei
- Department of Cardiology, the second affiliated hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Zhengxia Yang
- Department of Electronic Business, School of Economics and Finance, South China University of Technology, Guangzhou 510006, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Shenghui Zhang
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
5
|
Zhao Y, Ren P, Yang Z, Wang L, Hu C. Inhibition of SND1 overcomes chemoresistance in bladder cancer cells by promoting ferroptosis. Oncol Rep 2022; 49:16. [PMID: 36453257 PMCID: PMC9773013 DOI: 10.3892/or.2022.8453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
Chemotherapy remains one of the most important adjuvant treatments for bladder cancer (BC). However, similar to other malignancies, BC is prone to chemotherapy resistance and only approximately half of muscle‑invasive patients with BC respond to chemotherapy. The present study aimed to reveal the mechanisms underlying chemoresistance in BC cells. Cell viabilities were assessed by CCK‑8 assay. The differentiated expression of genes in chemoresistant and their parental BC cells were examined by RNA sequencing. Cell death was determined by flow cytometry. Different cell death inhibitors were used to determine the types of cell death. Levels of reactive oxygen species, iron, glutathione and malondialdehyde were assessed using the corresponding commercial kits. ChIP and dual luciferase activity assays were performed to investigate the interaction between staphylococcal nuclease and tumour domain containing 1 (SND1) and glutathione peroxidase 4 (GPX4) mRNA. RNAi was used to knockdown SND1 or GPX4. The results revealed that SND1 in BC cells were insensitive to cisplatin, and inhibition of SND1 overcame this resistance. Silencing of SND1 enhanced cell death induced by cisplatin by promoting ferroptosis in BC cells. Mechanistically, SND1 was revealed to bind to the 3'UTR region of GPX4 mRNA and stabilise it. Knockdown of GPX4 could also overcome chemoresistance, and overexpressing GPX4 reversed the effects of silencing of GPX4 on the chemosensitivity of BC cells. Thus, targeting the SND1‑GPX4 axis may be a potential strategy to overcome chemoresistance in BC cells.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Urology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Pengpeng Ren
- Department of Urology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Zhiqin Yang
- Department of Urology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Lei Wang
- Department of Urology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Changhua Hu
- Department of Urology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China,Correspondence to: Dr Changhua Hu, Department of Urology, Ningbo No. 7 Hospital, 718 Nan Er Xi Road, Ningbo, Zhejiang 315202, P.R. China, E-mail:
| |
Collapse
|
6
|
Ren J, Lv Y, Wu L, Chen S, Lei C, Yang D, Li F, Liu C, Zheng Y. Key ferroptosis-related genes in abdominal aortic aneurysm formation and rupture as determined by combining bioinformatics techniques. Front Cardiovasc Med 2022; 9:875434. [PMID: 36017103 PMCID: PMC9395677 DOI: 10.3389/fcvm.2022.875434] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high mortality and pathogenesis closely related to various cell death types, e.g., autophagy, apoptosis and pyroptosis. However, the association between AAA and ferroptosis is unknown. Methods GSE57691 and GSE98278 dataset were obtained from the Gene Expression Omnibus database, and a ferroptosis-related gene (FRG) set was downloaded from the FerrDb database. These data were normalized, and ferroptosis-related differentially expressed genes (FDEGs, AAA vs. normal samples) were identified using the limma package in R. FRGs expression was analyzed by Gene Set Expression Analysis (GSEA), and FDEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analyses using the clusterProfiler package in R and ClueGO in Cytoscape. Protein–protein interaction networks were assembled using Cytoscape, and crucial FDEGs were identified using CytoHubba. Critical FDEG transcription factors (TFs) were predicted with iRegulon. FDEGs were verified in GSE98278 set, and key FDEGs in AAA (compared with normal samples) and ruptured AAA (RAAA; compared with AAA samples) were identified. Ferroptosis-related immune cell infiltration and correlations with key genes were analyzed by CIBERSORT. Key FEDGs were reverified in Ang II-induced AAA models of ApoE–/– and CD57B/6J mice by immunofluorescence assay. Results In AAA and normal samples, 40 FDEGs were identified, and the expression of suppressive FRGs was significantly downregulated with GSEA. For FDEGs, the GO terms were response to oxidative stress and cellular response to external stimulus, and the KEGG pathways were the TNF and NOD-like receptor signaling pathways. IL6, ALB, CAV1, PTGS2, NOX4, PRDX6, GPX4, HSPA5, HSPB1, and NCF2 were the most enriched genes in the crucial gene cluster. CEBPG, NFAT5, SOX10, GTF2IRD1, STAT1, and RELA were potential TFs affecting these crucial genes. Ferroptosis-related immune cells involved in AAA formation were CD8+ T, naive CD4+ T, and regulatory T cells (Tregs); M0 and M2 macrophages; and eosinophils. Tregs were also involved in RAAA. GPX4, SLC2A1, and PEBP1 expression was downregulated in both the RAAA and AAA samples. GPX4 and PEBP1 were more important in AAA because they influenced ferroptosis-related immune cell infiltration, and SLC2A1 was more important in RAAA. Conclusions This is the first study to show that ferroptosis is crucial to AAA/RAAA formation. The TNF and NOD-like signaling pathways and ferroptosis-related immune cell infiltration play key roles in AAA/RAAA. GPX4 is a key ferroptosis-related gene in AAA. Ferroptosis and related genes might be promising targets in the treatment of AAA/RAAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuehong Zheng,
| |
Collapse
|
7
|
Jiang H, Zhou Y, Nabavi SM, Sahebkar A, Little PJ, Xu S, Weng J, Ge J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:925923. [PMID: 35722128 PMCID: PMC9199460 DOI: 10.3389/fcvm.2022.925923] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis is an immuno-metabolic disease involving chronic inflammation, oxidative stress, epigenetics, and metabolic dysfunction. There is compelling evidence suggesting numerous modifications including the change of the size, density, and biochemical properties in the low-density lipoprotein (LDL) within the vascular wall. These modifications of LDL, in addition to LDL transcytosis and retention, contribute to the initiation, development and clinical consequences of atherosclerosis. Among different atherogenic modifications of LDL, oxidation represents a primary modification. A series of pathophysiological changes caused by oxidized LDL (oxLDL) enhance the formation of foam cells and atherosclerotic plaques. OxLDL also promotes the development of fatty streaks and atherogenesis through induction of endothelial dysfunction, formation of foam cells, monocyte chemotaxis, proliferation and migration of SMCs, and platelet activation, which culminate in plaque instability and ultimately rupture. This article provides a concise review of the formation of oxLDL, enzymes mediating LDL oxidation, and the receptors and pro-atherogenic signaling pathways of oxLDL in vascular cells. The review also explores how oxLDL functions in different stages of endothelial dysfunction and atherosclerosis. Future targeted pathways and therapies aiming at reducing LDL oxidation and/or lowering oxLDL levels and oxLDL-mediated pro-inflammatory responses are also discussed.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongwen Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter J. Little
- School of Health and Behavioural Sciences, Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Suowen Xu ; orcid.org/0000-0002-5488-5217
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
- Jianping Weng ; orcid.org/0000-0002-7889-1697
| | - Jianjun Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Jianjun Ge ; orcid.org/0000-0002-9424-6049
| |
Collapse
|