1
|
Bian J, Ding H, Hu A, Wang J. Circ_0001361/miR-490-5p/IGF2 Axis Regulates the Viability and Apoptosis of Neuroblastoma Cells. Neurochem Res 2024; 49:3060-3068. [PMID: 39110291 DOI: 10.1007/s11064-024-04225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/17/2024] [Accepted: 08/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in the neuroblastoma (NB) development. Objectie: The study aimed to determine the biological behaviors of circ_0001361 and explore its underlying mechanism in NB. METHODS The circ_0001361, miR-490-5p, and IGF2 levels were measured using quantitative real-time polymerase chain reaction. Cellular processes were analyzed using MTT assay or fluorescence-activated cell sorting (FACS). Phosphorylated (p)-PI3K, p-AKT, Bax, and caspase-3 were tested by western blot. Dual-luciferase reporter analysis together with RNA pull-down analysis were utilized to evaluate the correlation of miR-490-5p and circ_0001361 or IGF2. RESULTS The results in this study illustrated that an elevation of circ_0001361 levels was observed in NB. Depletion of circ_0001361 suppressed the viability but facilitated apoptosis of NB cells. Circ_0001361 sponged miR-490-5p, which targeted to regulate IGF2. Inhibition of miR-490-5p rescued the effect induced by circ_0001361 knockdown, while deletion of IGF2 rescued the effect induced by the miR-490-5p inhibitor. CONCLUSIONS In summary, a loss of circ_0001361 inhibited NB progression via targeting the miR-490-5p/IGF2 axis, suggesting that circ_0001361 may be a novel therapeutical target of NB.
Collapse
Affiliation(s)
- Jian Bian
- Department of General Surgery, Children's Hospital Affiliated to Soochow University, Suzhou, China
- Department of General Surgery, Anhui Provincial Children's Hospital, Hefei, China
| | - Hao Ding
- Department of Clinical Nutrition, Anhui Provincial Children's Hospital, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Jian Wang
- Department of General Surgery, Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
3
|
Liu X, Liu Z, Liu Y, Wang N. ATG9A modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Epigenetics 2023; 18:2257538. [PMID: 37782756 PMCID: PMC10547073 DOI: 10.1080/15592294.2023.2257538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical cancer (CC) is a major public health problem, and its molecular mechanism requires further investigation. The goal of this study was to determine the role of miR-195-5p and the autophagy-related protein ATG9A in tumour metastasis, epithelial - mesenchymal transition (EMT), apoptosis, and autophagy of CC cells. Using bioinformatics analysis, we predicted ATG9A as a downstream target gene of miR-195-5p, an integral membrane protein required for autophagosome formation and involved in tumorigenesis. Next, western blotting and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that upregulation of miR-195-5p decreased protein and mRNA expression of ATG9A, and downregulation of miR-195-5p promoted ATG9A protein and mRNA expression. In addition, detection of the dual luciferase reporter gene further indicated ATG9A is a direct downstream target gene of miR-195-5p. Finally, the effects of miR-195-5p and ATG9A on CC cell proliferation, migration, invasion, EMT, autophagy, and apoptosis were evaluated in vitro. Our results showed that upregulation of miR-195-5p not only inhibits proliferation, migration, and the EMT of CC cells, but also induces apoptosis and autophagy. Conversely, downregulation of miR-195-5p increased malignant metastasis and the EMT of CC cells, and inhibited apoptosis as well as autophagy. In addition, miR-195-5p targeted and negatively regulated ATG9A, and rescue experiments suggested that overexpression of ATG9A could partially abolish miR-195-5p-mediated suppression of CC cells. Our findings improve our understanding of the mechanism of action of miR-195-5p in the malignant behaviour of CC. miR-195-5p is likely to be a promising cancer suppressor gene, which provides clinical evidence for targeted therapy of CC.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Zhen Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Yonggang Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Ning Wang
- Department of Gynecology, The Second Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
4
|
Wu K, Tan J, Yang C. Recent advances and application value of circRNA in neuroblastoma. Front Oncol 2023; 13:1180300. [PMID: 37091173 PMCID: PMC10116045 DOI: 10.3389/fonc.2023.1180300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Neuroblastoma (NB) is children’s most prevalent solid malignant tumor, accounting for 15% of childhood cancer mortality. Non-coding RNA is important in NB pathogenesis. As a newly identified non-coding RNA, abnormal regulation (abnormal up-regulation or down-regulation) of the circRNAs expression is implicated in the tumorigenesis of various tumors, including NB. CircRNAs primarily regulate the expression of microRNA (miRNA) target genes by microRNA (miRNA) sponge adsorption. Clinical evidence suggests that the expression of certain circRNAs is associated with the prognosis and clinical features of NB and hence may be exploited as a biomarker or therapeutic target. This review examines circRNAs that have been demonstrated to play a function in NB.
Collapse
Affiliation(s)
- Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Juan Tan
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chao Yang,
| |
Collapse
|
5
|
Li Q, Wang SJ, Wang WJ, Ye YC, Ling YQ, Dai YF. PAK4-relevant proliferation reduced by cell autophagy via p53/mTOR/p-AKT signaling. Transl Cancer Res 2023; 12:461-472. [PMID: 37033362 PMCID: PMC10080326 DOI: 10.21037/tcr-22-2272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
Background P21-activated kinase 4 (PAK4) involves in cell proliferation in cancer and mutually regulates with p53, a molecule is demonstrated to control cell autophagy by mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling. Since the signaling exhibits an association with PAK family members in cell autophagy, it implies that PAK4-relevant proliferation may be impacted by autophagy via p53 with a lack of evidence in cancer cells. Methods In this research, transient and stable PAK4-knockdown human hepatocarcinoma cell lines (HepG2) were constructed by transfection of PAK4-RNA interference (RNAi) plasmid and lentivirus containing PAK4-RNAi plasmid, respectively. We investigated cell proliferation using methyl thiazolyl tetrazolium (MTT) and Cell Counting Kit 8 (CCK8) assays, cell cycle by flow cytometry (FCM) and cell autophagy by monodansylcadaverine (MDC) staining and autophagic biomarker's expression, and detected the expressions of p53, mTOR, phosphorylated-AKT (p-AKT) and AKT by immunofluorescence and western blot to explore the mechanism. Results We successfully constructed transient and stable PAK4-knockdown HepG2 cell lines, and detected dysfunction of the cells' proliferation. An increased expression of p53, as a molecule of cell-cycle-surveillance on G1/S phase, was demonstrated in the cells although the cell cycle blocked at G2/M. And then, we detected increased autophagosome and autophagic biomarker LC3-II, and decreased expressions in p-AKT and mTOR. Conclusions The proliferation is reduced in PAK4-knockdown HepG2 cells, which is relative to not only cell cycle arrest but also cell autophagy, and p53/mTOR/p-AKT signaling involves in the cell progress. The findings provide a new mechanism on PAK4 block in cancer therapy.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Su-Jie Wang
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wen-Jia Wang
- Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yu-Cai Ye
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Ya-Fei Dai
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Jahangiri L. Metastasis in Neuroblastoma and Its Link to Autophagy. Life (Basel) 2023; 13:life13030818. [PMID: 36983973 PMCID: PMC10056181 DOI: 10.3390/life13030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroblastoma is a paediatric malignancy originating from the neural crest that commonly occurs in the abdomen and adrenal gland, leading to cancer-related deaths in children. Distant metastasis can be encountered at diagnosis in greater than half of these neuroblastoma patients. Autophagy, a self-degradative process, plays a key role in stress-related responses and the survival of cells and has been studied in neuroblastoma. Accordingly, in the early stages of metastasis, autophagy may suppress cancer cell invasion and migration, while its role may be reversed in later stages, and it may facilitate metastasis by enhancing cancer cell survival. To that end, a body of literature has revealed the mechanistic link between autophagy and metastasis in neuroblastoma in multiple steps of the metastatic cascade, including cancer cell invasion and migration, anoikis resistance, cancer cell dormancy, micrometastasis, and metastatic outbreak. This review aims to take a step forward and discuss the significance of multiple molecular players and compounds that may link autophagy to metastasis and map their function to various metastatic steps in neuroblastoma.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
7
|
MicroRNAs as prospective biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma. Mol Biol Rep 2023; 50:1895-1912. [PMID: 36520359 DOI: 10.1007/s11033-022-08137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroblastomas, the most prevalent malignant solid neoplasms of childhood, originate from progenitor cells of the sympathetic nervous system. Their genetic causation is diverse and involves multiple molecular mechanisms. This review highlights multiple roles of microRNA in neuroblastoma pathogenesis and discusses the prospects of harnessing these important natural regulator molecules as biomarkers, therapeutic targets and pharmaceuticals in neuroblastoma.
Collapse
|
8
|
Karami Fath M, Pourbagher Benam S, Salmani K, Naderi S, Fahham Z, Ghiabi S, Houshmand Kia SA, Naderi M, Darvish M, Barati G. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol Res Pract 2022; 238:154094. [PMID: 36087416 DOI: 10.1016/j.prp.2022.154094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma (NB) is a common cancer in childhood responsible for 15 % of fatalities by pediatric cancers. Epigenetic factors play an important role in the pathogenesis of NB. Recently, it has been demonstrated that circular RNAs (circRNAs, ciRNAs), a newly identified class of non-coding RNAs, are also dysregulated in NB. CircRNAs mediate their functions by regulating gene expression mainly through microRNA (miRNA) sponging. The dysregulation (abnormal upregulation or downregulation) of circRNAs is involved in tumorigenesis of a variety of tumors including NB. It seems that the expression of some circRNAs is correlated with NB prognosis and clinical features. CircRNAs might be favorable as a diagnostic/prognostic biomarker and therapeutic target. However, due to the lack of studies, it is difficult to make a conclusion regarding the clinical benefits of circRNAs. In this review, we discussed the circRNAs that experimentally have been proved to be dysregulated in NB tissues and cancer cells.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Naderi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fahham
- Faculty of Biology, Technische Universitat Dresden, Dresden, Germany
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
9
|
Zhou X, Lin J, Wang F, Chen X, Zhang Y, Hu Z, Jin X. Circular RNA-regulated autophagy is involved in cancer progression. Front Cell Dev Biol 2022; 10:961983. [PMID: 36187468 PMCID: PMC9515439 DOI: 10.3389/fcell.2022.961983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) are a sort of long, non-coding RNA molecules with a covalently closed continuous ring structure without 5'-3' polarity and poly-A tail. The modulative role of circRNAs in malignant diseases has been elucidated by many studies in recent years via bioinformatics and high-throughput sequencing technologies. Generally, circRNA affects the proliferative, invasive, and migrative capacity of malignant cells via various mechanisms, exhibiting great potential as novel biomarkers in the diagnoses or treatments of malignancies. Meanwhile, autophagy preserves cellular homeostasis, serving as a vital molecular process in tumor progression. Mounting studies have demonstrated that autophagy can not only contribute to cancer cell survival but can also induce autophagic cell death in specific conditions. A growing number of research studies have indicated that there existed abundant associations between circRNAs and autophagy. Herein, we systemically reviewed and discussed recent studies on this topic in different malignancies and concluded that the circRNA–autophagy axis played crucial roles in the proliferation, metastasis, invasion, and drug or radiation resistance of different tumor cells.
Collapse
|
10
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Wang S, Cao B, Hu D, Jia J, Wang Y, Chen L, Li J, Liu H, Tang H. LINC00467 facilitates the proliferation, migration and invasion of glioma via promoting the expression of inositol hexakisphosphate kinase 2 by binding to miR-339-3p. Bioengineered 2022; 13:3370-3382. [PMID: 35156508 PMCID: PMC8973818 DOI: 10.1080/21655979.2021.2018098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Our previous studies indicate that long noncoding RNA (lncRNA) LINC00467 can act as an oncogene to participate in the malignant progression of glioma, but the underlying molecular mechanism remains to be studied further. This study aimed to explore the biological role of the LINC00467/miR-339-3p/ inositol hexakisphosphate kinase 2 (IP6K2) regulatory axis in glioma. The Cancer Genome Atlas (TCGA), Oncomine databases and reverse transcription‑quantitative PCR (RT‑qPCR) were used to analyze IP6K2 expression in glioma. RT-PCR, EdU and transwell assays were conducted to observe the effect of IP6K2 on glioma cell proliferation, migration and invasion. Using bioinformatics analysis, RT-PCR, and dual luciferase reporter gene assay, the potential role of the LINC00467/miR-339-3p/IP6K2 regulatory axis in glioma was verified. The results showed that IP6K2 was up-regulated in glioma tissues and cell lines. Moreover, the expression level of IP6K2 was correlated with the clinical features of glioma patients. In vitro and in vivo experiments indicated that IP6K2 overexpression could promote the proliferation, migration, and invasion of glioma cells. Further bioinformatics analysis and in vitro assays revealed that LINC00467 could promote IP6K2 expression by binding to miR-339-3p and promote the malignant progression of glioma. Overall, LINC00467 could upregulate IP6K2 by binding to miR-339-3p and promote the proliferation, migration, and invasion of glioma cells. The LINC00467/miR-339-3p/IP6K2 regulatory axis might be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University Nanjing, China.,School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| | - Yaxuan Zhang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University Nanjing, China
| | - Sen Wang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University Nanjing, China
| | - Boqiang Cao
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University Nanjing, China
| | - Daling Hu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Junli Jia
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| | - Yuhang Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| | - Luyao Chen
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| | - Jiaming Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huamin Tang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing China
| |
Collapse
|