1
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
2
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Ramachandran A, Dhar R, Devi A. Stem Cell-Derived Exosomes: An Advanced Horizon to Cancer Regenerative Medicine. ACS APPLIED BIO MATERIALS 2024; 7:2128-2139. [PMID: 38568170 DOI: 10.1021/acsabm.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cancer research has made significant progress in recent years, and extracellular vesicles (EVs) based cancer investigation reveals several facts about cancer. Exosomes are a subpopulation of EVs. In the present decade, exosomes is mostly highlighted for cancer theranostic research. Tumor cell derived exosomes (TEXs) promote cancer but there are multiple sources of exosomes that can be used as cancer therapeutic agents (plant exosomes, stem cell-derived exosomes, modified or synthetic exosomes). Stem cells based regenerative medicine faces numerous challenges, such as promote tumor development, cellular reprogramming etc., and therefore addressing these complications becomes essential. Stem cell-derived exosomes serves as an answer to these problems and offers a better solution. Global research indicates that stem cell-derived exosomes also play a dual role in the cellular system by either inhibiting or promoting cancer. Modified exosomes which are genetically engineered exosomes or surface modified exosomes to increase the efficacy of the therapeutic properties can also be considered to target the above concerns. However, the difficulties associated with the exosomes include variations in exosomes heterogenity, isolation protocols, large scale production, etc., and these have to be managed effectively. In this review, we explore exosomes biogenesis, multiple stem cell-derived exosome sources, drug delivery, modified stem cells exosomes, clinical trial of stem cells exosomes, and the related challenges in this domain and future orientation. This article may encourage researchers to explore stem cell-derived exosomes and develop an effective and affordable cancer therapeutic solution.
Collapse
Affiliation(s)
- Aparna Ramachandran
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
4
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Miceli V. Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy. World J Stem Cells 2024; 16:7-18. [PMID: 38292438 PMCID: PMC10824041 DOI: 10.4252/wjsc.v16.i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential. MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs. These cells are characterized by easy accessibility, few ethical concerns, and adaptability to in vitro cultures, making them a valuable resource for cell therapy in several clinical conditions. Over the years, it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors, including cytokines, growth factors, and exosomes (EXOs), which modulate the tissue microenvironment and facilitate repair and regeneration processes. Consequently, MSC-derived products, such as conditioned media and EXOs, are now being extensively evaluated for their potential medical applications, offering advantages over the long-term use of whole MSCs. However, the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods. To address these concerns and to enhance MSC therapeutic potential, researchers have explored many priming strategies, including exposure to inflammatory molecules, hypoxic conditions, and three-dimensional culture techniques. These approaches have optimized MSC secretion of functional factors, empowering them with enhanced immunomodulatory, angiogenic, and regenerative properties tailored to specific medical conditions. In fact, various priming strategies show promise in the treatment of numerous diseases, from immune-related disorders to acute injuries and cancer. Currently, in order to exploit the full therapeutic potential of MSC therapy, the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders. In other words, to unlock the complete potential of MSCs in regenerative medicine, it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione, Palermo 90127, Italy.
| |
Collapse
|
6
|
E VIGNESHBALAJI, RAMESH DIVYA, SHAJU MANISHACHUNGAN, KUMAR AKSHARA, PANDEY SAMYAK, NAYAK RAKSHA, ALKA V, MUNJAL SRISHTI, SALIMI AMIR, PAI KSREEDHARARANGANATH, BAKKANNAVAR SHANKARM. Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer. Oncol Res 2023; 32:73-94. [PMID: 38188673 PMCID: PMC10767237 DOI: 10.32604/or.2023.030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/25/2023] [Indexed: 01/09/2024] Open
Abstract
Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.
Collapse
Affiliation(s)
- VIGNESH BALAJI E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - DIVYA RAMESH
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - MANISHA CHUNGAN SHAJU
- School of Health and Community Services, Durham College, Oshawa, Ontario, L1G2G5, Canada
| | - AKSHARA KUMAR
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SAMYAK PANDEY
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - RAKSHA NAYAK
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V. ALKA
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SRISHTI MUNJAL
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - AMIR SALIMI
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. SREEDHARA RANGANATH PAI
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SHANKAR M. BAKKANNAVAR
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
7
|
Chang C, Cai RP, Su YM, Wu Q, Su Q. Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. J Cardiovasc Transl Res 2023; 16:1085-1098. [PMID: 37286924 PMCID: PMC10246878 DOI: 10.1007/s12265-023-10401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
Ischemic cardiomyopathy is treated mainly with thrombolytic drugs, percutaneous coronary intervention, and coronary artery bypass grafting to recanalize blocked vessels. Myocardial ischemia-reperfusion injury (MIRI) is an unavoidable complication of obstructive revascularization. Compared with those of myocardial ischemic injury, few effective therapeutic options are available for MIRI treatment. The pathophysiological mechanisms of MIRI involve the inflammatory response, the immune response, oxidative stress, apoptosis, intracellular Ca2+ overload, and cardiomyocyte energy metabolism. These mechanisms exacerbate MIRI. Mesenchymal stem cell-derived exosomes (MSC-EXOs) can alleviate MIRI through these mechanisms and, to some extent, prevent the limitations caused by direct MSC administration. Therefore, using MSC-EXOs instead of MSCs to treat MIRI is a potentially beneficial cell-free treatment strategy. In this review, we describe the mechanism of action of MSC-EXO-derived noncoding RNAs in the treatment of MIRI and discuss the advantages and limitations of this strategy, as well as possible future research directions.
Collapse
Affiliation(s)
- Chen Chang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Ru-Ping Cai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China
| | - Qiang Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China.
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541000, China.
| |
Collapse
|
8
|
Stage HJ, Trappe S, Söllig K, Trachsel DS, Kirsch K, Zieger C, Merle R, Aschenbach JR, Gehlen H. Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources. Animals (Basel) 2023; 13:ani13081352. [PMID: 37106915 PMCID: PMC10135324 DOI: 10.3390/ani13081352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The investigation of multipotent stem/stromal cells (MSCs) in vitro represents an important basis for translational studies in large animal models. The study's aim was to examine and compare clinically relevant in vitro properties of equine MSCs, which were isolated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue by collagenase digestion (ASCs-SVF) and an explant technique (ASCs-EXP). Firstly, we examined proliferation and trilineage differentiation and, secondly, the cardiomyogenic differentiation potential using activin A, bone morphogenetic protein-4 and Dickkopf-1. Fibroblast-like, plastic-adherent ASCs-SVF and ASCs-EXP were obtained from all sources. The proliferation and chondrogenic differentiation potential did not differ significantly between the isolation methods and localizations. However, abd-ASCs-EXP showed the highest adipogenic differentiation potential compared to rb- and sc-ASCs-EXP on day 7 and abd-ASCs-SVF a higher adipogenic potential compared to abd-ASCs-EXP on day 14. Osteogenic differentiation potential was comparable at day 14, but by day 21, abd-ASCs-EXP demonstrated a higher osteogenic potential compared to abd-ASCs-SVF and rb-ASCs-EXP. Cardiomyogenic differentiation could not be achieved. This study provides insight into the proliferation and multilineage differentiation potential of equine ASCs and is expected to provide a basis for future preclinical and clinical studies in horses.
Collapse
Affiliation(s)
- Hannah J Stage
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Susanne Trappe
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Katharina Söllig
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Dagmar S Trachsel
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Katharina Kirsch
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Cornelia Zieger
- Institute of Veterinary Pathology Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
9
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci 2022; 23:ijms231810972. [PMID: 36142881 PMCID: PMC9502508 DOI: 10.3390/ijms231810972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Puyang Gong
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| | - Jian Gu
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| |
Collapse
|
11
|
Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6742792. [PMID: 35979398 PMCID: PMC9377967 DOI: 10.1155/2022/6742792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
Aging shows a decline in overall physical function, and cellular senescence is the powerful catalyst leading to aging. Considering that aging will be accompanied with the emergence of various aging-related diseases, research on new antiaging drugs is still valuable. Extracellular vesicles (EVs), as tools for intercellular communication, are important components of the senescence-associated secretory phenotype (SASP), and they can play pathological roles in the process of cellular senescence. In addition, EVs are similar to their original cells in functions. Therefore, EVs derived from pathological tissues or body fluids may be closely related to the progression of diseases and become potential biomarkers, while those from healthy cells may have therapeutic effects. Moreover, EVs are satisfactory drug carriers. At present, numerous studies have supported the idea that engineered EVs could improve drug targeting ability and utilization efficiency. Here, we summarize the characteristics of EVs and cellular senescence and focus on the diagnostic and therapeutic potential of EVs in various aging-related diseases, including Alzheimer disease, osteoporosis, cardiovascular disease, diabetes mellitus and its complications, and skin aging.
Collapse
|
12
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
13
|
Hu L, Guan Z, Tang C, Li G, Wen J. Exosomes derived from microRNA-21 overexpressed adipose tissue-derived mesenchymal stem cells alleviate spine osteoporosis in ankylosing spondylitis mice. J Tissue Eng Regen Med 2022; 16:634-642. [PMID: 35441454 DOI: 10.1002/term.3304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/06/2022] [Accepted: 04/02/2022] [Indexed: 12/22/2022]
Abstract
MicroRNA-21 (miR-21) can induce proliferation and differentiation of mesenchymal stem cells (MSCs) to promote bone formation, we therefore aimed to investigate whether exosomes derived from miR-21 overexpressing adipose tissue-derived MSCs (AD-MSCs) could improve spine osteoporosis in ankylosing spondylitis (AS) mice. Cultured AD-MSCs were transfected with lentivirus vectors containing miR-21 or control vector, and the supernatant was centrifugated and filtrated to harvest the exosomes (miR-21-Exos or vector-Exos). BALB/c mice were immunized with cartilage proteoglycan to establish proteoglycan-induced ankylosing spondylitis (PGIA) model. Six weeks later, PGIA mice were further injected with miR-21-Exos or vector-Exos. Transfection of miR-21 in AD-MSCs significantly enhanced miR-21 levels in AD-MSCs and their exosomes. miR-21-Exos showed concentration-dependent protective effect against spine osteoporosis in PGIA mice, evidenced by increased bone mineral content and bone mineral density, reduced number of osteoclasts, decreased content of deoxypyridinoline in the urine, decreased content of tartrate-resistant acid phosphatase (TRACP)-5b and cathepsin K in the serum, and down-regulated interleukin (IL)-6 expression in the spine, whereas vector-Exos did not show any treatment benefit. The above findings indicate that miR-21-Exos could be utilized to treat spine osteoporosis in AS.
Collapse
Affiliation(s)
- Lisheng Hu
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiping Guan
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chenfeng Tang
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guoxin Li
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Wen
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
MSC-Derived Extracellular Vesicle-Delivered L-PGDS Inhibit Gastric Cancer Progression by Suppressing Cancer Cell Stemness and STAT3 Phosphorylation. Stem Cells Int 2022; 2022:9668239. [PMID: 35087591 PMCID: PMC8789473 DOI: 10.1155/2022/9668239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) serving as delivery system have attracted extensive research interest, especially in cancer therapy. In our previous study, lipocalin-type prostaglandin D2 synthase (L-PGDS) showed inhibitory effects on gastric cancer growth. In this study, we aimed to explore whether MSC-EV-delivered L-PGDS (EVs-L-PGDS) could inhibit gastric cancer progression. EVs-L-PGDS were generated from MSCs transfected with adenovirus encoding L-PGDS. Cell colony-forming, migration, invasion, and flow cytometry assays were used to show the inhibitory effects of EVs on tumor cells in vitro, and the nude mouse subcutaneous tumor model was performed to show the inhibitory effect of EVs on tumor progression in vivo. In vitro, EVs-L-PGDS could be internalized and inhibit the colony-forming, migration, and invasion ability of gastric cancer cell SGC-7901 and promote cell apoptosis. In vivo, EVs-L-PGDS inhibited the tumor growth in nude mouse subcutaneous tumor-bearing model. Compared with the PBS and EVs containing empty vector (EVs-Vector) group, more apoptotic cells and higher L-PGDS expression were detected in tumor tissue of the EVs-L-PGDS treatment group. And these differences are significant. Mechanistically, EVs-L-PGDS reduced the expression of stem cell markers including Oct4, Nanog, and Sox2 and inhibited STAT3 phosphorylation in gastric cancer cell SGC-7901. In conclusion, our results imply that MSC-derived EVs could be utilized as an effective nanovehicle to deliver L-PGDS for gastric cancer treatment, which provides a novel idea for the EV-based cancer therapy.
Collapse
|
15
|
Harrell CR, Volarevic A, Djonov VG, Jovicic N, Volarevic V. Mesenchymal Stem Cell: A Friend or Foe in Anti-Tumor Immunity. Int J Mol Sci 2021; 22:ijms222212429. [PMID: 34830312 PMCID: PMC8622564 DOI: 10.3390/ijms222212429] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewable, multipotent stem cells that regulate the phenotype and function of all immune cells that participate in anti-tumor immunity. MSCs modulate the antigen-presenting properties of dendritic cells, affect chemokine and cytokine production in macrophages and CD4+ T helper cells, alter the cytotoxicity of CD8+ T lymphocytes and natural killer cells and regulate the generation and expansion of myeloid-derived suppressor cells and T regulatory cells. As plastic cells, MSCs adopt their phenotype and function according to the cytokine profile of neighboring tumor-infiltrated immune cells. Depending on the tumor microenvironment to which they are exposed, MSCs may obtain pro- and anti-tumorigenic phenotypes and may enhance or suppress tumor growth. Due to their tumor-homing properties, MSCs and their exosomes may be used as vehicles for delivering anti-tumorigenic agents in tumor cells, attenuating their viability and invasive characteristics. Since many factors affect the phenotype and function of MSCs in the tumor microenvironment, a better understanding of signaling pathways that regulate the cross-talk between MSCs, immune cells and tumor cells will pave the way for the clinical use of MSCs in cancer immunotherapy. In this review article, we summarize current knowledge on the molecular and cellular mechanisms that are responsible for the MSC-dependent modulation of the anti-tumor immune response and we discuss different insights regarding therapeutic potential of MSCs in the therapy of malignant diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Department of Cognitive Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Correspondence: ; Tel./Fax: +381-34306800
| |
Collapse
|