1
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wu D, Zhang Y, Zou B, Lu Y, Cao H. Shaoyao decoction alleviates TNBS-induced ulcerative colitis by decreasing inflammation and balancing the homeostasis of Th17/Treg cells. BMC Complement Med Ther 2023; 23:424. [PMID: 38001450 PMCID: PMC10668496 DOI: 10.1186/s12906-023-04237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent and non-specific inflammatory condition that mainly affects the bowels and has challenging treatment. UC has a growing incidence and significantly affects the well-being of patients. Many medications used to treat UC can disrupt the metabolism and immune system homeostasis, frequently leading to significant adverse effects. Hence, exploring alternative therapies, such as traditional Chinese medicine and probiotics, has recently emerged as a primary research hotspot owing to their safety. Although the therapeutic mechanism of Shaoyao decoction has not been clarified, it has demonstrated a beneficial clinical effect on UC. AIM This study aimed to assess the effect of Shaoyao decoction on a rat model of UC and investigate its underlying mechanisms. METHODS The rat model of UC was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The extent of damage to the intestines was assessed using the disease activity index (DAI), colonic mucosa damage index (CMDI), and histological scores. Immunohistochemistry was employed to detect the tissue levels of interleukin (IL)-17, transforming growth factor (TGF)-β1, and IL-10. Additionally, the proportion of Th17 and Treg cells was detected using flow cytometry. In colon tissue, the levels of forkhead box (Fox)p3, RAR-related orphan receptor (ROR)γt, IL-6, p-STAT3, and STAT3 proteins were quantified by Western blotting. RESULTS Treatment with Shaoyao decoction enhanced the overall health of rats and reduced colonic damage. Additionally, Shaoyao decoction significantly alleviated the severity of DAI, CMDI, and HS. The proportion of Th17 cells was reduced, and the proportion of Treg cells was increased by Shaoyao decoction. The expression of IL-17 and RORγt was suppressed by Shaoyao decoction, while the expression of IL-10, TGF-β1, and Foxp3 was increased. The expression of IL-6, p-STAT3, and STAT3 was decreased by Shaoyao decoction. CONCLUSION The Shaoyao decoction alleviates the symptoms of TNBS-induced UC by decreasing inflammation and mitigating intestinal damage while preserving the balance between Th17 and Treg. Shaoyao decoction modulates the IL-6/STAT3 axis, thereby regulating the balance between Th17 and Treg cells.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yu Zhang
- Department of Internal Medicine, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Bo Zou
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Lu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hui Cao
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
5
|
Yang Y, Qian C, Wu R, Wang R, Ou J, Liu S. Exploring the mechanism of the Fructus Mume and Rhizoma Coptidis herb pair intervention in Ulcerative Colitis from the perspective of inflammation and immunity based on systemic pharmacology. BMC Complement Med Ther 2023; 23:11. [PMID: 36647064 PMCID: PMC9841615 DOI: 10.1186/s12906-022-03823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Ulcerative Colitis (UC) is a chronic nonspecific inflammatory disease of the colon and rectum. Fructus Mume (FM) and Rhizoma Coptidis (RC) exert effects on inflammatory and immune diseases. We evaluated the hypothesis of the FM and RC (FM-RC) herb pair remedy in alleviating dextran sulfate sodium (DSS)-induced colitis, through network pharmacology-based analyses, molecular docking, and experimental validation. METHODS The Traditional Chinese medicine systematic pharmacology analysis platform(TCMSP) and Swiss database were used to predict potential targets of FM-RC and the GeneCards database was utilized to collect UC genes. Cytoscape software was used to construct and analyze the networks, and DAVID was utilized to perform enrichment analysis. AutoDock software was used to dock the core chemical components of the FM-RC herb pair with key UC targets. Animal experiments were performed to validate the prediction results and general conditions and body weight were observed. Pathological changes in colon tissue were observed by staining with hematoxylin and eosin. The levels of TNF-α, IL-8, IL-17, and IL-4 in serum and colon tissue were detected by ELISA. RESULTS Eighteen effective components of the herb couple were screened, and their potential therapeutic targets in the treatment of UC were acquired from 110 overlapped targets. GO and KEGG analyses revealed that these targets were highly correlated with protein autophosphorylation, plasma membrane, ATP binding, cancer pathways, the PI3K-AKt signaling pathway, and the Rap1 signaling pathway. Molecular docking established the core protein interactions with compounds having a docking energy < 0 kJ·mol-1, indicating the core active components had strong binding activities with the core targets. FM-RC herb pair relieved pathological indicators and reduced the concentration of TNF-α, IL-8, and IL-17 and increased IL-4 levels in the serum and colon tissues of UC rats. CONCLUSION Collectively, FM-RC herb pair administration alleviated UC. These beneficial effects targeted MAPK1 signaling related to inflammation and immunity, which provided a basis for a better understanding of FM-RC in the treatment of UC.
Collapse
Affiliation(s)
- Yatian Yang
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Chengcheng Qian
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Rui Wu
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Rui Wang
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China ,grid.495512.e0000 0004 7470 502XWuhu Institute of Technology, Wuhu, 241006 China
| | - Jinmei Ou
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China ,Key Laboratory of Anhui Province for the New Technology of Chinese Medicine Decoction Pieces Manufacturing, Hefei, 230012 China ,Anhui Academy of Chinese Medicine Institute of Chinese Medicine Resources Protection and Development, Hefei, 230012 China
| | - Shoujin Liu
- grid.252251.30000 0004 1757 8247Anhui University of Chinese Medicine, Hefei, 230012 China ,Anhui Academy of Chinese Medicine Institute of Chinese Medicine Resources Protection and Development, Hefei, 230012 China
| |
Collapse
|
6
|
Fang S, Gao Y, Fang Y, Sun J, Xie Z. Mechanism Underlying the Action of Berberine in the Treatment of Gouty Arthritis Based on Network Pharmacology. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Gouty arthritis (GA) is induced by a purine metabolism disorder and monosodium urate (MSU) crystal-related inflammation. Berberine (BBR), extracted from Coptis chinensis, ameliorates MSU-induced GA. However, the mechanisms of BBR against GA remain to be fully elucidated. This study aimed to identify the key targets and pathways mediating the effects of BBR against GA using network pharmacology. Methods: BBR and GA targets were obtained from several databases, and the network of BBR-GA common targets was visualized using Cytoscape software. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the STRING and Database for Annotation, Visualization, and Integrated Discovery databases, respectively. Animal experiments were performed to determine the outcomes of the BBB intervention. The serum levels of IL-1β, IL-8, and IL-6 were detected using enzyme-linked immunosorbent assay. Results: Thirty-three common targets (including NF-κB, RelA, MAPK1, IL-6, and IL-1β) of BBR and GA were identified, and a network of common targets between BBR and GA was constructed. PPI analysis demonstrated that IL-1β, IL-6, TNF, MAPK, and RelA are key targets with high degree values. GO and KEGG pathway analyses revealed the involvement of inflammation-related biological processes and signaling pathways, such as the NF-κB, MAPK, and TNF signaling pathways. Animal experiments demonstrated that the uric acid, IL-1β, IL-6, and IL-8 serum levels were significantly lower in the BBR group compared with those in hyperuricemic rats. Conclusions: Using systematic network analysis, potential targets mediating the effects of BBR on GA were detected. The pathways and inflammatory factors involved were identified using in vivo experiments, thus providing a reference for further basic research and clinical applications of BBR in the treatment of GA.
Collapse
Affiliation(s)
- Shan Fang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yan Gao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Fang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Sun
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Luo Z, Li Z, Liang Z, Wang L, He G, Wang D, Shen L, Wang Z, Ma X, Geng F, Wang H, Liu W, Liu H, Li B. Berberine increases stromal production of Wnt molecules and activates Lgr5 + stem cells to promote epithelial restitution in experimental colitis. BMC Biol 2022; 20:287. [PMID: 36528592 PMCID: PMC9759859 DOI: 10.1186/s12915-022-01492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are characterized by sustained inflammation and/or ulcers along the lower digestive tract, and have complications such as colorectal cancer and inflammation in other organs. The current treatments for IBDs, which affect 0.3% of the global population, mainly target immune cells and inflammatory cytokines with a success rate of less than 40%. RESULTS Here we show that berberine, a natural plant product, is more effective than the frontline drug sulfasalazine in treating DSS (dextran sulfate sodium)-induced colitis in mice, and that berberine not only suppresses macrophage and granulocyte activation but also promotes epithelial restitution by activating Lgr5+ intestinal stem cells (ISCs). Mechanistically, berberine increases the expression of Wnt genes in resident mesenchymal stromal cells, an ISC niche, and inhibiting Wnt secretion diminishes the therapeutic effects of berberine. We further show that berberine controls the expression of many circadian rhythm genes in stromal cells, which in turn regulate the expression of Wnt molecules. CONCLUSIONS Our findings suggest that berberine acts on the resident stromal cells and ISCs to promote epithelial repair in experimental colitis and that Wnt-β-Catenin signaling may be a potential target for colitis treatment.
Collapse
Affiliation(s)
- Zecheng Luo
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Li
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Liang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanlin He
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuying Ma
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Funeng Geng
- Good Doctor Pharmaceutical Group of Sichuan, Chengdu, 610000 Sichuan China
| | - Haozhong Wang
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Wenping Liu
- grid.411304.30000 0001 0376 205XCollege of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| | - Huijuan Liu
- grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- grid.411304.30000 0001 0376 205XInstitute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,grid.16821.3c0000 0004 0368 8293Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Yu H, Zhang F, Wen Y, Zheng Z, Chen G, Pan Y, Wu P, Ye Q, Han J, Chen X, Liu C, Shen T. Mechanism of interventional effect and targets of Zhuyu pill in regulating and suppressing colitis and cholestasis. Front Pharmacol 2022; 13:1038188. [PMID: 36408242 PMCID: PMC9666482 DOI: 10.3389/fphar.2022.1038188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Zhuyu pill (ZYP) is a traditional Chinese medicine prescription composed of two drugs, Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley, and is commonly used in the clinical treatment of diseases of the digestive system. However, the mechanism underlying the effect of ZYP on colitis remains unclear. In this study, a colitis rat model was induced with 2,4,6-trinitro-benzenesulfonic acid (TNBS, 100 mg/kg) and treated with ZYP (low dose: 0.6 g/kg, high dose: 1.2 g/kg). Disease activity index, colonic weight index, and weight change ratio were used to evaluate the model and efficacy. LC-MS and 16S rRNA gene sequencing were used to measure differences in fecal metabolism and microorganism population among the control, model, low-dose ZYP, and high-dose ZYP groups. To elucidate the mechanism of interventional effect of ZYP, Spearman correlation analysis was used to analyze the correlation between fecal metabolism and fecal microbial number. High-dose and low-dose ZYP both exhibited significant interventional effects on colitis rat models, and high-dose ZYP produced a better interventional effect compared with low-dose ZYP. Based on a metabolomics test of fecal samples, significantly altered metabolites in the model and high-dose ZYP treatment groups were identified. In total, 492 metabolites were differentially expressed. Additionally, sequencing of the 16S rRNA gene in fecal samples revealed that the high-dose ZYP could improve TNBS-induced fecal microbiota dysbiosis. Ultimately, changes in tryptophan metabolism and Firmicutes and Gammaproteobacteria populations were detected after ZYP treatment in both colitis and cholestasis. Therefore, we conclude that tryptophan metabolism and Firmicutes and Gammaproteobacteria populations are the core targets of the anti-inflammatory effect of ZYP. These findings provide a scientific basis for further investigation of the anti-inflammatory mechanism of ZYP in the future.
Collapse
Affiliation(s)
- Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Department of Pediatrics, Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Zhili Zheng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Xiaofeng Chen, ; Chao Liu, ; Tao Shen,
| |
Collapse
|
9
|
Hu S, Wei P, Li W, Liu Q, Chen S, Hu C, Guo X, Ma X, Zeng J, Zhang Y. Pharmacological effects of berberine on models of ulcerative colitis: A meta-analysis and systematic review of animal studies. Front Pharmacol 2022; 13:937029. [PMID: 36147325 PMCID: PMC9486070 DOI: 10.3389/fphar.2022.937029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/09/2022] Open
Abstract
Berberine (BBR) is the main active constituent of the Rhizoma coptidis (Huanglian) and has multiple biological activities. Although current evidence suggests that the BBR has a multi-target effect in ulcerative colitis (UC), its action and mechanism are unclear. The purpose of this meta-analysis was to assess the pharmacological effects and potential mechanisms of BBR in UC models. Studies were searched from four databases (PubMed, Embase, Web of Science, and Cochrane Library) until March 2022. Standardized mean difference (SMD) and 95% confidence intervals (CI) were used for the adjudication of outcomes. Stata 15.0 software was used for statistical analysis. Twenty-eight publications and 29 studies involving 508 animals were included in the meta-analysis. The results showed that BBR reduced disease activity index (DAI) scores, alleviated UC-induced colon length (CL) loss, prevented weight loss, and reduced histological colitis score (HCS). Mechanistically, BBR was found to reduce myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, reduce levels of pro-inflammatory factors interleukin-1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ) and mRNA expression of interleukin 17, increase levels of anti-inflammatory factor interleukin 10 (IL-10), and to increase levels of tight junction protein zonula occludens-1 (ZO-1) and occludin, which may involve antioxidant, anti-apoptotic, neuromodulation, anti-fibrotic, anti-inflammatory, barrier protection, and flora regulation aspects. However, additional attention should be paid to these outcomes due to the heterogeneity and methodological quality of the studies.
Collapse
Affiliation(s)
- Shuangyuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei Wei
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuanglan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyu Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaochuan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Jinhao Zeng
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Yi Zhang,
| |
Collapse
|
10
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
11
|
Chang JM, Wu JY, Chen SH, Chao WY, Chuang HH, Kam KH, Zhao PW, Li YZ, Yen YP, Lee YR. 9-O-Terpenyl-Substituted Berberrubine Derivatives Suppress Tumor Migration and Increase Anti-Human Non-Small-Cell Lung Cancer Activity. Int J Mol Sci 2021; 22:ijms22189864. [PMID: 34576028 PMCID: PMC8469690 DOI: 10.3390/ijms22189864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.
Collapse
Affiliation(s)
- Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kam-Hong Kam
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yu-Pei Yen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|