1
|
Lin J, Yin X, Zeng Y, Hong X, Zhang S, Cui B, Zhu Q, Liang Z, Xue Z, Yang D. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnol Adv 2023; 69:108266. [PMID: 37778531 DOI: 10.1016/j.biotechadv.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Plant-derived natural products are a specific class of active substances with numerous applications in the medical, energy, and industrial fields. Many of these substances are in high demand and have become the fundamental materials for various purposes. Recently, the use of synthetic biology to produce plant-derived natural products has become a significant trend. Plant chassis, in particular, offer unique advantages over microbial chassis in terms of cell structure, product affinity, safety, and storage. The development of the plant hairy root tissue culture system has accelerated the commercialization and industrialization of synthetic biology in the production of plant-derived natural products. This paper will present recent progress in the synthesis of various plant natural products using plant chassis, organized by the types of different structures. Additionally, we will summarize the four primary types of plant chassis used for synthesizing natural products from plant sources and review the enabling technologies that have contributed to the development of synthetic biology in recent years. Finally, we will present the role of isolated and combined use of different optimization strategies in breaking the upper limit of natural product production in plant chassis. This review aims to provide practical references for synthetic biologists and highlight the great commercial potential of plant chassis biosynthesis, such as hairy roots.
Collapse
Affiliation(s)
- Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China
| | - Youran Zeng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Hong
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Qinlong Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China..
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China.
| |
Collapse
|
2
|
Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. SEPARATIONS 2023. [DOI: 10.3390/separations10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The Scutellaria baicalensis—Coptis chinensis pair is an herbal combination used for the treatment of various heat-related diseases. During the extraction process, two herbs can mutually influence the extraction efficiency of the chemical constituents contained in each herb. The concentrations of five flavonoids from S. baicalensis and seven alkaloids from C. chinensis were compared in paired or single hot-water extracts at different temperatures (80, 90, and 100 °C) and extraction times (60, 90, and 120 min). Temperature- and time-dependent increases in marker compound concentrations were observed in both paired and single extracts, with the exception of baicalin, berberine, and coptisine in the paired extracts at 100 °C. However, the extractions of the compounds in the paired and single extracts were affected differently by the extraction conditions. Furthermore, the concentrations of most marker compounds in single extracts were 1.09–44.13 times those in paired extracts. The contents of baicalin, wogonoside, coptisine, and berberine, known to be easily aggregated by the flavonoid–alkaloid complex, were changed by 0.024–0.764-fold in the paired extract. The effect of extraction temperature and time on the formation of the flavonoid–alkaloid complex was not significant. The extraction efficiency of the flavonoids and alkaloids can be affected by the pair of S. baicalensis—C. chinensis, which is a primary factor in the chemical modification of two herb-containing herbal extracts.
Collapse
|
3
|
Huang X, Jia A, Huang T, Wang L, Yang G, Zhao W. Genomic profiling of WRKY transcription factors and functional analysis of CcWRKY7, CcWRKY29, and CcWRKY32 related to protoberberine alkaloids biosynthesis in Coptis chinensis Franch. Front Genet 2023; 14:1151645. [PMID: 37035743 PMCID: PMC10076542 DOI: 10.3389/fgene.2023.1151645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Coptis chinensis Franch. (Huanglian in Chinese) is an important economic crop with medicinal value. Its rhizome has been used as a traditional herbal medicine for thousands of years in Asia. Protoberberine alkaloids, as the main bioactive component of Coptis chinensis, have a series of pharmacological activities. However, the protoberberine alkaloids content of C. chinensis is relatively low. Understanding the molecular mechanisms affecting the transcriptional regulation of protoberberine alkaloids would be crucial to increase their production via metabolic engineering. WRKY, one of the largest plant-specific gene families, regulates plant defense responses via the biosynthesis of specialized metabolites such as alkaloids. Totally, 41 WRKY transcription factors (TFs) related to protoberberine alkaloid biosynthesis were identified in the C. chinensis genome and classified into three groups based on phylogenetic and conserved motif analyses. Three WRKY genes (CcWRKY7, CcWRKY29, and CcWRKY32) may regulate protoberberine alkaloid biosynthesis, as suggested by gene-specific expression patterns, metabolic pathways, phylogenetic, and dual-luciferase analysis. Furthermore, the CcWRKY7, CcWRKY29, and CcWRKY32 proteins were specifically detected in the nucleus via subcellular localization. This study provides a basis for understanding the regulatory mechanisms of protoberberine alkaloid biosynthesis and valuable information for breeding C. chinensis varieties.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - An Jia
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Tao Huang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Li Wang
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
| | - Guohua Yang
- Shizuishan Hospital of Traditional Chinese Medicine, Shizuishan, China
- *Correspondence: Guohua Yang, ; Wanli Zhao,
| | - Wanli Zhao
- Zhengzhou Key Laboratory of Antitumor Traditional Chinese Medicine Research, Medical College, Huanghe University of Science and Technology, Zhengzhou, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- *Correspondence: Guohua Yang, ; Wanli Zhao,
| |
Collapse
|
4
|
Ozbek Yazici S, Ozmen İ. Ultrasound assisted extraction of phenolic compounds from
Capparis Ovata
var canescens fruit using deep eutectic solvents. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sercan Ozbek Yazici
- Faculty of Health Sciences Department of Nutrition and Dietetics Burdur Mehmet Akif Ersoy University Burdur Turkey
| | - İsmail Ozmen
- Art and Science Faculty Department of Chemistry Suleyman Demirel University Isparta Turkey
| |
Collapse
|