1
|
Custódio Dias Duarte B, Ribeiro Queiroz F, Percínio Costa Á, Borges de Melo Neto A, Pereira de Souza Melo C, de Oliveira Salles PG, de Jesus Jeremias W, Lima Bertarini PL, Rodrigues do Amaral L, da Conceição Braga L, de Souza Gomes M, Lopes da Silva Filho A. Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer. Noncoding RNA Res 2025; 11:104-114. [PMID: 39736855 PMCID: PMC11683307 DOI: 10.1016/j.ncrna.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness. The CC treatment is influenced by the disease stage, with an unfavorable prognosis for those in advanced stages. This study aimed to investigate the potential of long non-coding RNAs (lncRNAs) in CC by identifying and characterizing related lncRNAs, elucidating their regulatory mechanisms and molecular interactions, and analyzing their expression patterns in patients with diverse responses to chemoradiotherapy. Non-stem cells from CC were isolated using flow cytometry sorting and used for total RNA extraction. The RNA was used to build libraries that were subsequently sequenced using the Illumina Nextseq 550.417 lncRNAs that showed differentially expressed between CC patients who responded or not to treatment. Further analysis demonstrated that these lncRNAs significantly interact with several molecules, which play crucial roles in CC progression and therapeutic resistance. Statistical analysis correlated the expression profile of these lncRNAs with treatment efficacy. Three lncRNAs, ENSG00000267838, ENSG00000266340, and FRMD6-AS1, were identified with positive expression related to non-response to chemoradiotherapy and worse progression-free survival in CC patients. Specifically, lncRNA ENSG00000267838 has its up-regulation related to non-response and down-regulation to response to chemoradiotherapy treatment.
Collapse
Affiliation(s)
- Bruna Custódio Dias Duarte
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Álvaro Percínio Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Angelo Borges de Melo Neto
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | | | | | - Wander de Jesus Jeremias
- Laboratório de Farmacologia Experimental, Escola de Farmácia, Universidade Federal de Ouro Preto, 35402-163, Ouro Preto, MG, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Cheng S, Wang X, Yang S, Liang J, Song C, Zhu Q, Chen W, Ren Z, Zhu F. Identification of novel disulfidptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of skin cutaneous melanoma patients. Skin Res Technol 2024; 30:e13814. [PMID: 38924611 PMCID: PMC11197043 DOI: 10.1111/srt.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is an aggressive form of malignant melanoma with poor prognosis and high mortality rates. Disulfidptosis is a newly discovered cell death regulatory mechanism caused by the abnormal accumulation of disulfides. This unique pathway is guiding significant new research to understand cancer progression for targeted treatment. However, the correlation between disulfidptosis with long non-coding RNAs (lncRNAs) in SKCM remains unknown at present. METHODS The Cancer Genome Atlas database furnished lncRNA expression data and clinical information for SKCM patients. Pearson correlation and Cox regression analyses identified disulfidptosis-related lncRNAs associated with SKCM prognosis. ROC curves and a nomogram validated the model. TME, immune infiltration, GSEA analysis, immune checkpoint gene expression profiling, and drug sensitivity were assessed in high and low-risk groups. Consistent clustering categorized SKCM patients for personalized clinical treatment guidance. RESULTS A total of twelve disulfidptosis-related lncRNAs were identified for the development of prognosis prediction models. The area under the curve (AUC) values of the ROC curve and the nomogram provided reliable discrimination to evaluate the prognostic potential for SKCM patients. The TME played a crucial role in tumorigenesis, progression and prognosis, and the risk scores were closely related to immune cell infiltration. Meanwhile, the combination of chemotherapy, targeted therapy, and immunotherapy was recommended for low-risk patients based on drug sensitivity and immune efficacy analyses. CONCLUSION We identified a risk model of twelve disulfidptosis-related lncRNAs that could be used to predict the prognosis of SKCM patients and help guide immunotherapy and chemotherapy for personalized treatment plans.
Collapse
Affiliation(s)
- Shengrong Cheng
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xin Wang
- Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Shuhan Yang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Jiahui Liang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of Breast SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Caiying Song
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Qiuxuan Zhu
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wendong Chen
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Zhiyao Ren
- Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Fei Zhu
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
3
|
Yao Y, Zhang Q, Wei S, Li H, Zhou T, Zhang Q, Zhang J, Zhang J, Wang H. Signature identification based on immunogenic cell death-related lncRNAs to predict the prognosis and immune activity of patients with endometrial carcinoma. Transl Cancer Res 2024; 13:2913-2937. [PMID: 38988945 PMCID: PMC11231768 DOI: 10.21037/tcr-23-2243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background Endometrial carcinoma (EC) is one of the most prevalent gynecologic malignancies and requires further classification for treatment and prognosis. Long non-coding RNAs (lncRNAs) and immunogenic cell death (ICD) play a critical role in tumor progression. Nevertheless, the role of lncRNAs in ICD in EC remains unclear. This study aimed to explore the role of ICD related-lncRNAs in EC via bioinformatics and establish a prognostic risk model based on the ICD-related lncRNAs. We also explored immune infiltration and immune cell function across prognostic groups and made treatment recommendations. Methods A total of 552 EC samples and clinical data of 548 EC patients were extracted from The Cancer Genome Atlas (TCGA) database and University of California Santa Cruz (UCSC) Xena, respectively. A prognostic-related feature and risk model was developed using the least absolute shrinkage and selection operator (LASSO). Subtypes were classified with consensus cluster analysis and validated with t-Distributed Stochastic Neighbor Embedding (tSNE). Kaplan-Meier analysis was conducted to assess differences in survival. Infiltration by immune cells was estimated by single sample gene set enrichment analysis (ssGSEA), Tumor IMmune Estimation Resource (TIMER) algorithm. Quantitative polymerase chain reaction (qPCR) was used to detect lncRNAs expression in clinical samples and cell lines. A series of studies was conducted in vitro and in vivo to examine the effects of knockdown or overexpression of lncRNAs on ICD. Results In total, 16 ICD-related lncRNAs with prognostic values were identified. Using SCARNA9, FAM198B-AS1, FKBP14-AS1, FBXO30-DT, LINC01943, and AL161431.1 as risk model, their predictive accuracy and discrimination were assessed. We divided EC patients into high-risk and low-risk groups. The analysis showed that the risk model was an independent prognostic factor. The prognosis of the high- and low-risk groups was different, and the overall survival (OS) of the high-risk group was lower. The low-risk group had higher immune cell infiltration and immune scores. Consensus clustering analysis divided the samples into four subtypes, of which cluster 4 had higher immune cell infiltration and immune scores. Conclusions A prognostic signature composed of six ICD related-lncRNAs in EC was established, and a risk model based on this signature can be used to predict the prognosis of patients with EC.
Collapse
Affiliation(s)
- Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, China
| |
Collapse
|
4
|
Wang K, Yang C, Xie J, Zhang X, Wei T, Yan Z. Long non-coding RNAs in ferroptosis and cuproptosis impact on prognosis and treatment in hepatocellular carcinoma. Clin Exp Med 2024; 24:135. [PMID: 38907744 PMCID: PMC11193701 DOI: 10.1007/s10238-024-01397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/08/2024] [Indexed: 06/24/2024]
Abstract
Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chunqian Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Cancer Hospital, Huai'an, China
| | - Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ting Wei
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Zhu Yan
- Emergency Medicine Department, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaian, China.
| |
Collapse
|
5
|
Zhang Y, Gao Y, Li F, Qi Q, Li Q, Gu Y, Zheng Z, Hu B, Wang T, Zhang E, Xu H, Liu L, Tian T, Jin G, Yan C. Long non-coding RNA NRAV in the 12q24.31 risk locus drives gastric cancer development through glucose metabolism reprogramming. Carcinogenesis 2024; 45:23-34. [PMID: 37950445 DOI: 10.1093/carcin/bgad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) serve as vital candidates to mediate cancer risk. Here, we aimed to identify the risk single-nucleotide polymorphisms (SNPs)-induced lncRNAs and to investigate their roles in gastric cancer (GC) development. Through integrating the differential expression analysis of lncRNAs in GC tissues and expression quantitative trait loci analysis in normal stomach tissues and GC tissues, as well as genetic association analysis based on GC genome-wide association studies and an independent validation study, we identified four lncRNA-related SNPs consistently associated with GC risk, including SNHG7 [odds ratio (OR) = 1.16, 95% confidence interval (CI): 1.09-1.23], NRAV (OR = 1.11, 95% CI: 1.05-1.17), LINC01082 (OR = 1.16, 95% CI: 1.08-1.22) and FENDRR (OR = 1.16, 95% CI: 1.07-1.25). We further found that a functional SNP rs6489786 at 12q24.31 increases binding of MEOX1 or MEOX2 at a distal enhancer and results in up-regulation of NRAV. The functional assays revealed that NRAV accelerates GC cell proliferation while inhibits GC cell apoptosis. Mechanistically, NRAV decreases the expression of key subunit genes through the electron transport chain, thereby driving the glucose metabolism reprogramming from aerobic respiration to glycolysis. These findings suggest that regulating lncRNA expression is a crucial mechanism for risk-associated variants in promoting GC development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yun Gao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qian Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhonghua Zheng
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Institute of Digestive Endoscopy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, China
| |
Collapse
|
6
|
Ren H, Zheng J, Zhu Y, Wang L, Liu J, Xu H, Dong J, Zhang S. Comprehensive analysis of cuproptosis-related long non-coding RNAs in prognosis, immune microenvironment infiltration and chemotherapy response of hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36611. [PMID: 38115286 PMCID: PMC10727658 DOI: 10.1097/md.0000000000036611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The objective of this study is to explore the relationship between cuproptosis-related long noncoding RNAs (lncRNAs) in hepatocellular carcinoma (HCC). RNA-seq data, including lncRNAs and related clinical information of HCC patients, were downloaded from The Cancer Genome Atlas database. A signature composed 3 cuproptosis-related lncRNAs was constructed by LASSO analysis, and HCC patients were classified into high- and low-risk groups. Patients in the high-risk group had a poorer prognosis compared with the low-risk group. Univariate Cox and multivariate Cox regression analyses confirmed that the signature model was an independent risk factor compared to other clinical biomarkers. Furthermore, gene set enrichment analysis indicated that metabolism-related pathways were enriched in low-risk group, including drug metabolism, and fatty acid metabolism. Further research demonstrated that there were markedly differences in drug response between the high- and low-risk group. Immune related analysis showed that the most type of immune cells and immunological function in the high-risk group were different with the risk-group. Finally, TP53 mutation rate and the tumor mutational burden in the high-risk group were higher compared with the low-risk group. In conclusion, we constructed a prognostic signature based on the expression of cuproptosis-related lncRNAs to predict HCC patients' prognosis, drug response and immune microenvironment, and further research will be conducted to uncover the mechanisms.
Collapse
Affiliation(s)
- Huili Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leiyun Wang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmin Liu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Xu
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Dong
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaohui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang X, Yang X, Zhang Y, Guo A, Luo S, Xiao M, Xue L, Zhang G, Wang H. Fatty Acid Metabolism-Related lncRNAs are Potential Biomarkers for Predicting Prognoses and Immune Responses in Patients with Skin Cutaneous Melanoma. Clin Cosmet Investig Dermatol 2023; 16:3595-3614. [PMID: 38116144 PMCID: PMC10729836 DOI: 10.2147/ccid.s417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Introduction Skin cutaneous melanoma is becoming more dangerous since it has a poor prognosis and is resistant to treatment. Previous research has shown that lncRNAs and fatty acid metabolism are essential for numerous biological activities. There are no studies on the relationship between fatty acid metabolism-Related lncRNAs and skin cutaneous melanoma. Methods and Results In order to better understand the prognosis and survival of SKCM patients, we investigated the significance of lncRNAs related to fatty acid metabolism. In this work, we looked at the fatty acid metabolism genes and lncRNAs expression patterns. On the basis of lncRNAs associated with fatty acid metabolism, a nomogram and a prognosis prediction model were created. Based on the profile of lncRNAs associated with fatty acid metabolism, functional and pharmacological sensitivity investigations were also carried out. We also looked at the connection between immunotherapy and the immune response. The findings demonstrated that a risk score model based on 11 essential lncRNAs for fatty acid metabolism may discriminate between the clinical condition of SKCM and more accurately predict prognosis and survival. We conducted quantitative reverse transcription polymerase-chain reaction (RT-PCR) to verify the model. Conclusion These important lncRNAs further showed a strong association with the tumor immune system, and these important lncRNAs also showed a connection between SKCM and chemotherapeutic treatment sensitivity. Our research strives to provide fresh viewpoints and innovative approaches to the treatment and administration of SKCM.
Collapse
Affiliation(s)
- Xing Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Dermatovenereology, Baotou Central Hospital, Baotou City, Inner Mongolia, People’s Republic of China
| | - Xiaojing Yang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Dermatovenereology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, People’s Republic of China
| | - Yiming Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Afei Guo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Suju Luo
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Meng Xiao
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Lu Xue
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Guohui Zhang
- Department of Dermatovenereology, Baotou Central Hospital, Baotou City, Inner Mongolia, People’s Republic of China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Han M, Wang Y, Huang X, Li P, Liang X, Wang R, Bao K. Identification of hub genes and their correlation with immune infiltrating cells in membranous nephropathy: an integrated bioinformatics analysis. Eur J Med Res 2023; 28:525. [PMID: 37974210 PMCID: PMC10652554 DOI: 10.1186/s40001-023-01311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Membranous nephropathy (MN) is a chronic glomerular disease that leads to nephrotic syndrome in adults. The aim of this study was to identify novel biomarkers and immune-related mechanisms in the progression of MN through an integrated bioinformatics approach. METHODS The microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between MN and normal samples were identified and analyzed by the Gene Ontology analysis, the Kyoto Encyclopedia of Genes and Genomes analysis and the Gene Set Enrichment Analysis (GSEA) enrichment. Hub The hub genes were screened and identified by the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm. The receiver operating characteristic (ROC) curves evaluated the diagnostic value of hub genes. The single-sample GSEA analyzed the infiltration degree of several immune cells and their correlation with the hub genes. RESULTS We identified a total of 574 DEGs. The enrichment analysis showed that metabolic and immune-related functions and pathways were significantly enriched. Four co-expression modules were obtained using WGCNA. The candidate signature genes were intersected with DEGs and then subjected to the LASSO analysis, obtaining a total of 6 hub genes. The ROC curves indicated that the hub genes were associated with a high diagnostic value. The CD4+ T cells, CD8+ T cells and B cells significantly infiltrated in MN samples and correlated with the hub genes. CONCLUSIONS We identified six hub genes (ZYX, CD151, N4BP2L2-IT2, TAPBP, FRAS1 and SCARNA9) as novel biomarkers for MN, providing potential targets for the diagnosis and treatment.
Collapse
Affiliation(s)
- Miaoru Han
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xing Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Rongrong Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Kun Bao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong-Hong Kong-Macau Joint Lab On Chinese Medicine and Immune Disease Research, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Luo D, Liang Y, Wang Y, Ye F, Jin Y, Li Y, Han D, Wang Z, Chen B, Zhao W, Wang L, Chen X, Jiang L, Yang Q. Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Res 2023; 25:109. [PMID: 37770991 PMCID: PMC10540452 DOI: 10.1186/s13058-023-01709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with higher aggressiveness and poorer outcomes. Recently, long non-coding RNAs (lncRNAs) have become the crucial gene regulators in the progression of human cancers. However, the function and underlying mechanisms of lncRNAs in TNBC remains unclear. METHODS Based on public databases and bioinformatics analyses, the low expression of lncRNA MIDEAS-AS1 in breast cancer tissues was detected and further validated in a cohort of TNBC tissues. The effects of MIDEAS-AS1 on proliferation, migration, invasion were determined by in vitro and in vivo experiments. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were carried out to reveal the interaction between MIDEAS-AS1 and MATR3. Luciferase reporter assay, Chromatin immunoprecipitation (ChIP) and qRT-PCR were used to evaluate the regulatory effect of MIDEAS-AS1/MATR3 complex on NCALD. RESULTS LncRNA MIDEAS-AS1 was significantly downregulated in TNBC, which was correlated with poor overall survival (OS) and progression-free survival (PFS) in TNBC patients. MIDEAS-AS1 overexpression remarkably inhibited tumor growth and metastasis in vitro and in vivo. Mechanistically, MIDEAS-AS1 mainly located in the nucleus and interacted with the nuclear protein MATR3. Meanwhile, NCALD was selected as the downstream target, which was transcriptionally regulated by MIDEAS-AS1/MATR3 complex and further inactivated NF-κB signaling pathway. Furthermore, rescue experiment showed that the suppression of cell malignant phenotype caused by MIDEAS-AS1 overexpression could be reversed by inhibition of NCALD. CONCLUSIONS Collectively, our results demonstrate that MIDEAS-AS1 serves as a tumor-suppressor in TNBC through modulating MATR3/NCALD axis, and MIDEAS-AS1 may function as a prognostic biomarker for TNBC.
Collapse
Affiliation(s)
- Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Zekun Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Bing Chen
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhao
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Lijuan Wang
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China
| | - Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China
| | - Liyu Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Chen X, Sun M, Feng W, Chen J, Ji X, Xie M, Huang W, Chen X, Zhang B, Nie Y, Fan D, Wu K, Xia L. An integrative analysis revealing cuproptosis-related lncRNAs signature as a novel prognostic biomarker in hepatocellular carcinoma. Front Genet 2023; 14:1056000. [PMID: 36845390 PMCID: PMC9950118 DOI: 10.3389/fgene.2023.1056000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Background: Cuproptosis is a newly defined form of cell death, whether cuproptosis involved in hepatocellular carcinoma (HCC) remains elusive. Method: We obtained patients' RNA expression data and follow-up information from University of California Santa Cruz (UCSC) and The Cancer Genome Atlas (TCGA). We analyzed the mRNA level of Cuproptosis-related genes (CRGs) and performed univariate Cox analysis. Liver hepatocellular carcinoma (LIHC) was chosen for further investigation. Real-Time quantitative PCR (RT-qPCR), Western blotting (WB), Immunohistochemical (IHC), and Transwell assays were used to determine expression patterns and functions of CRGs in LIHC. Next, we identified CRGs-related lncRNAs (CRLs) and differentially expressed CRLs between HCC and normal cases. Univariate Cox analysis, least absolute shrinkage selection operator (LASSO) analysis and Cox regression analysis were used to construct the prognostic model. Univariate and multivariate Cox analysis was used to assess whether the risk model can act as an independent risk factor of overall survival duration. Different risk groups performed immune correlation analysis, tumor mutation burden (TMB), and Gene Set Enrichment Analysis (GSEA) analysis were performed in different risk groups. Finally, we assessed the performance of the predictive model in drug sensitivity. Results: CRGs expression levels have significant differences between tumor and normal tissues. High expression of Dihydrolipoamide S-Acetyltransferase (DLAT) correlated to metastasis of HCC cells and indicated poor prognosis for HCC patients. Our prognostic model consisted of four cuproptosis-related lncRNA (AC011476.3, AC026412.3, NRAV, MKLN1-AS). The prognostic model performed well in predicting survival rates. The results from Cox regression analysis suggested that risk score can serve as an independent prognostic element for survival durations. Survival analysis revealed that low risk patients have extended survival periods compared with those with high risk. The results of the immune analysis indicated that risk score has a positive correlation with B cell and CD4+ T cell Th2, while has a negative relationship with endothelial cell and hematopoietic cells. Besides, immune checkpoint genes have higher expression folds in the high-risk set than in the low-risk set. The high-risk group had higher rates of genetic mutation than the low-risk set while having a shorter survival time. GSEA revealed the signaling pathways enriched in the high-risk group were mostly immune-related, while metabolic-related pathways were enriched in the low-risk group. Drugs sensitivity analysis indicated that our model has the ability to predict the efficacy of clinical treatment. Conclusion: The Cuproptosis-related lncRNAs prognostic formula is a novel predictor of HCC patients' prognosis and drug sensitivity.
Collapse
Affiliation(s)
- Xilang Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Mengyu Sun
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jie Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyu Ji
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Xie
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China,*Correspondence: Kaichun Wu, ; Limin Xia,
| | - Limin Xia
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Kaichun Wu, ; Limin Xia,
| |
Collapse
|
11
|
Li G, Xu S, Yang S, Wu C, Zhang L, Wang H. An immune infiltration-related long non-coding RNAs signature predicts prognosis for hepatocellular carcinoma. Front Genet 2022; 13:1029576. [PMID: 36568382 PMCID: PMC9773198 DOI: 10.3389/fgene.2022.1029576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background: With a high incidence and dismal survival rate, hepatocellular carcinoma (HCC) tops the list of the world's most frequent malignant tumors. Immunotherapy is a new approach to cancer treatment, and its effect on prolonging overall survival (OS) varies from patient to patient. For a more effective prognosis and treatment of HCC, we are committed to identifying immune infiltration-related long non-coding RNAs (IIRLs) with prognostic value in hepatocellular carcinoma. Methods: In our study, we calculated immune scores of 369 hepatocellular carcinoma samples from the Cancer Genome Atlas (TCGA) database by using an estimation algorithm, and obtained long non-coding RNAs (lncRNAs) associated with immune infiltration by using Weighted Gene Co-expression Network analysis (WGCNA). For training cohort, univariate Cox, least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analysis were used to determine prognostic IIRLs, we established a prognostic IIRLs signature. By testing cohort and entire cohort, we confirmed that the signature is practical. The prognosis of people with different clinicopathological stages and risk scores were predicted by the nomogram we constructed. In addition, Immune cell infiltration analysis and prediction of therapeutic drugs were performed. Results: 93 IIRLs were obtained by WGCNA. Furthermore, the prognostic value of these IIRLs were evaluated by using univariate Cox, Lasso and multivariate Cox analysis. Four IIRLs were used to create a signature with a prognosis. Time-related receiver operating characteristic (ROC) curve revealed that this model had an acceptable prognostic value for HCC patients. By using univariate and multivariate Cox regression analysis, this risk score has been shown to be an independent prognostic factor for HCC. The nomogram we made showed good predictions. Except for that, the treatment with immune checkpoint inhibitors (ICI) was likely to be more effective for low-risk patients. Conclusion: Based on four IIRLs, a prognostic signature was created in this research showed good accuracy in predicting OS. This study also provided valuable references for Immunotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gen Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shaodian Xu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuai Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Liangliang Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Hongbing Wang,
| |
Collapse
|
12
|
He WP, Chen YY, Wu LX, Guo YY, You ZS, Yang GF. A novel necroptosis-related lncRNA signature for predicting prognosis and anti-cancer treatment response in endometrial cancer. Front Immunol 2022; 13:1018544. [PMID: 36466815 PMCID: PMC9708746 DOI: 10.3389/fimmu.2022.1018544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Necroptosis, a form of programmed cell death, underlies tumorigenesis and the progression of cancers. Anti-cancer strategies targeting necroptosis have increasingly been shown to present a potential cancer therapy. However, the predictive utility and anticancer sensitivity value of necroptosis-related lncRNAs (NRLs) for endometrial cancer (EC) are currently unknown. METHODS EC patient gene expression profiles and the corresponding clinical information collected from The Cancer Genome Atlas were used to identify NRLs that constituted a predictive signature for EC. The functional pathways, immune status, clinicopathological correlation, and anticancer drug sensitivity of the patients relative to the NRLs signatures were analyzed. RESULTS A signature composed of 7 NRLs (AC019080.5, BOLA3-AS1, AC022144.1, AP000345.2, LEF1-AS1, AC010503.4, and RPARP-AS1) was identified. The high-risk patient group with this signature exhibited a poorer prognosis and lower survival rate than low-risk group lacking this signature. This necroptosis-related lncRNA signature had a higher predictive accuracy compared with other clinicopathological variables (area under the receiver operating characteristic curve of the risk score: 0.717). Additionally, when patients were stratified based on other clinicopathological variables, the overall survival was significantly shorter in the high-risk versus low-risk group across all cohorts. Gene set enrichment analysis (GSEA) revealed that immune- and tumor-related signaling pathways and biological processes were enriched in the high-risk group compared to the low-risk group. Single-sample gene set enrichment analysis (ssGSEA) additionally showed that the resulting risk score was strongly correlated with EC patient immune status. Finally, patients with high-risk scores were more sensitive to the anti-cancer drugs such as Docetaxel, Mitomycin.C, Vinblastine, AZD.2281 (olaparib), AZD6244, and PD.0332991 (Palbociclib). CONCLUSION These findings reveal a novel necroptosis-related lncRNA signature for predicting EC patient prognosis and shed new light on anticancer therapy strategies for EC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Fen Yang
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Gao C, Zhou G, Cheng M, Feng L, Cao P, Zhou G. Identification of senescence-associated long non-coding RNAs to predict prognosis and immune microenvironment in patients with hepatocellular carcinoma. Front Genet 2022; 13:956094. [PMID: 36330438 PMCID: PMC9624069 DOI: 10.3389/fgene.2022.956094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/30/2022] [Indexed: 02/17/2024] Open
Abstract
Background: Cellular senescence plays a complicated and vital role in cancer development because of its divergent effects on tumorigenicity. However, the long non-coding RNAs (lncRNAs) associated with tumor senescence and their prognostic value in hepatocellular carcinoma (HCC) remain unexplored. Methods: The trans-cancer oncogene-induced senescence (OIS) signature was determined by gene set variation analysis (GSVA) in the cancer genome atlas (TCGA) dataset. The OIS-related lncRNAs were identified by correlation analyses. Cox regression analyses were used to screen lncRNAs associated with prognosis, and an optimal predictive model was created by regression analysis of the least absolute shrinkage and selection operator (LASSO). The performance of the model was evaluated by Kaplan-Meier survival analyses, nomograms, stratified survival analyses, and receiver operating characteristic curve (ROC) analyses. Gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) were carried out to explore the functional relevance and immune cell infiltration, respectively. Results: Firstly, we examined the pan-cancer OIS signature, and found several types of cancer with OIS strongly associated with the survival of patients, including HCC. Subsequently, based on the OIS signature, we identified 76 OIS-related lncRNAs with prognostic values in HCC. We then established an optimal prognostic model based on 11 (including NRAV, AC015908.3, MIR100HG, AL365203.2, AC009005.1, SNHG3, LINC01138, AC090192.2, AC008622.2, AL139423.1, and AC026356.1) of these lncRNAs by LASSO-Cox regression analysis. It was then confirmed that the risk score was an independent and potential risk indicator for overall survival (OS) (HR [95% CI] = 4.90 [2.74-8.70], p < 0.001), which outperforms those traditional clinicopathological factors. Furthermore, patients with higher risk scores also showed more advanced levels of a proinflammatory senescence-associated secretory phenotype (SASP), higher infiltration of regulatory T (Treg) cells and lower infiltration of naïve B cells, suggesting the regulatory effects of OIS on immune microenvironment. Additionally, we identified NRAV as a representative OIS-related lncRNA, which is over-expressed in HCC tumors mainly driven by DNA hypomethylation. Conclusion: Based on 11 OIS-related lncRNAs, we established a promising prognostic predictor for HCC patients, and highlighted the potential immune microenvironment-modulatory roles of OIS in HCC, providing a broad molecular perspective of tumor senescence.
Collapse
Affiliation(s)
- Chengzhi Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guangming Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Min Cheng
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lan Feng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Hebei University, Baoding, China
- Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Huang L, Li Y, Wang P, Xie Y, Liu F, Mao J, Miao J. Integrated analysis of immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network in children with Henoch Schönlein purpura nephritis. Transl Pediatr 2022; 11:1682-1696. [PMID: 36345450 PMCID: PMC9636465 DOI: 10.21037/tp-22-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children. METHODS Differential analysis was employed to identify the differentially expressed lncRNAs, as well as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. Spearman's correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the peripheral blood samples of children with HSPN. RESULTS By intersecting the differentially expressed immune-related and apoptosis-related genes through GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the specific regulatory network may act as potential biomarkers with prognosis in children with HSPN. CONCLUSIONS LncRNAs may play essential regulatory roles in the occurrence and development of HSPN in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in children.
Collapse
Affiliation(s)
- Lingfei Huang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| | - Pu Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yi Xie
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Miao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Wei S, Zhang J, Shi R, Yu Z, Chen X, Wang H. Identification of an integrated kinase-related prognostic gene signature associated with tumor immune microenvironment in human uterine corpus endometrial carcinoma. Front Oncol 2022; 12:944000. [PMID: 36158685 PMCID: PMC9491090 DOI: 10.3389/fonc.2022.944000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
In the worldwide, uterine corpus endometrial carcinoma (UCEC) is the sixth most common malignancy in women, and the number of women diagnosed is increasing. Kinase plays an important role in the occurrence and development of malignant tumors. However, the research about kinase in endometrial cancer is still unclear. Here, we first downloaded the gene expression data of 552 UCEC patients and 23 healthy endometrial tissues from The Cancer Genome Atlas (TCGA), obtained 538 kinase-related genes from the previous literature, and calculated 67 differentially expressed kinases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were referenced to identify multiple important biological functions and signaling pathways related to 67 differentially expressed kinases. Using univariate Cox regression and Least absolute shrinkage and selection operator (LASSO), seven kinases (ALPK2, CAMKV, TTK, PTK6, MAST1, CIT, and FAM198B) were identified to establish a prognostic model of endometrial cancer. Then, patients were divided into high- and low-risk groups based on risk scores. Receiver operating characteristic (ROC) curves were plotted to evaluate that the model had a favorable predictive ability. Kaplan–Meier survival analysis suggested that high-risk groups experienced worse overall survival than low-risk groups. qRT-PCR and ISH assays confirmed the consistency between predicted candidate genes and real sample contents. CIBERSORT algorithm and ssGSEA were adopted to investigate the relationship between this signature and tumor immune microenvironment, and revealed that in low- and high-risk groups, the types of tumor-infiltrating immune cells and the immune cell-related functions were significantly different. In summary, a seven-gene signature risk model has been constructed, and could accurately predict the prognosis of UCEC, which may offer ideas and breakthrough points to the kinase-associated development of UCEC.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwei Chen
- Department of Industrial engineering, Tsinghua University, Beijing, China
| | - Hongbo Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongbo Wang,
| |
Collapse
|
16
|
Identification of a Hypoxia-Angiogenesis lncRNA Signature Participating in Immunosuppression in Gastric Cancer. J Immunol Res 2022; 2022:5209607. [PMID: 36052279 PMCID: PMC9427269 DOI: 10.1155/2022/5209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Hypoxia and angiogenesis are the leading causes of tumor progression, and their strong correlation has been discovered in many cancers. However, their collective function’s prognostic and biological roles were not reported in gastric cancer. Hence, we aimed to investigate the effects of hypoxia and angiogenesis on gastric cancer via sequencing data. This study used weighted gene coexpression network analysis and random forest regression to build a hypoxia-angiogenesis-related model (HARM) via the TCGA-STAD lncRNA data. It estimated the HARM’s correlation with clinical features and its accuracy for survival prediction. Sequential functional analyses were conducted to investigate its biological role, and we next sought the immune landscape status and immunological function variation by ESTIMATE score calculation and GSVA, respectively. Seven different algorithms were conducted to assess the immunocyte infiltration, and TIDE score and immune checkpoint levels were compared between the high- and low-HARM groups. As a result, we found that HARM predicted patient survival with high accuracy and was correlated with higher stages of gastric cancer. Various cancer-associated pathways and macrophage-related regulations were upregulated in the high-HRAM group. The high-HARM group harbored higher immune levels, and M2 macrophages and cancer-associated fibroblasts were particularly highly unfiltered. Furthermore, globally upregulated immune checkpoints and higher TIDE scores were observed in the high-HARM group. Finally, we filtered eight drugs with lower IC50 in the high-HARM group as potential drugs for the HARM-targeted therapy. We believe this study opens up novel perspectives into the interaction between hypoxia-angiogenesis and immunosuppression and will provide novel insights for gastric cancer immunotherapy.
Collapse
|
17
|
Mo X, Hu D, Yang P, Li Y, Bashir S, Nai A, Ma F, Jia G, Xu M. A novel cuproptosis-related prognostic lncRNA signature and lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory axis in lung adenocarcinoma. Front Oncol 2022; 12:927706. [PMID: 35936736 PMCID: PMC9353736 DOI: 10.3389/fonc.2022.927706] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) remains the most common subtype of lung malignancy. Cuproptosis is a newly identified cell death which could regulate tumor cell proliferation and progression. Long non-coding RNAs (lncRNAs) are key molecules and potential biomarkers for diagnosing and treating various diseases. However, the effects of cuproptosis-related lncRNAs on LUAD are still unclear. In our study, 7 cuproptosis-related lncRNAs were selected to establish a prognostic model using univariate Cox regression analysis, LASSO algorithm, and multivariate analysis. Furthermore, we evaluated AC008764.2, AL022323.1, ELN-AS1, and LINC00578, which were identified as protective lncRNAs, while AL031667.3, AL606489.1, and MIR31HG were identified as risk lncRNAs. The risk score calculated by the prognostic model proved to be an effective independent factor compared with other clinical features by Cox regression analyses [univariate analysis: hazard ratio (HR) = 1.065, 95% confidence interval (CI) = 1.043–1.087, P < 0.001; multivariate analysis: HR = 1.067, 95% CI = 1.044–1.091, P < 0.001]. In addition, both analyses (ROC and nomogram) were used to corroborate the accuracy and reliability of this signature. The correlation between cuproptosis-related lncRNAs and immune microenvironment was elucidated, where 7 immune cells and 8 immune-correlated pathways were found to be differentially expressed between two risk groups. Furthermore, our results also identified and verified the ceRNA of cuproptosis-related lncRNA MIR31HG/miR-193a-3p/TNFRSF21 regulatory axis using bioinformatics tools. MIR31HG was highly expressed in LUAD specimens and some LUAD cell lines. Inhibition of MIR31HG clearly reduced the proliferation, migration, and invasion of the LUAD cells. MIR31HG showed oncogenic features via sponging miR-193a-3p and tended to positively regulate TNFRSF21 expression. In a word, lncRNA MIR31HG acts as an oncogene in LUAD by targeting miR-193a-3p to modulate TNFRSF21, which may be beneficial to the gene therapy of LUAD.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pingshan Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Guoxia Jia
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: Meng Xu,
| |
Collapse
|
18
|
Wu J, Zhang L, Wu S, Liu Z. Ferroptosis: Opportunities and Challenges in Treating Endometrial Cancer. Front Mol Biosci 2022; 9:929832. [PMID: 35847989 PMCID: PMC9284435 DOI: 10.3389/fmolb.2022.929832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis, a new way of cell death, is involved in many cancers. A growing number of studies have focused on the unique role of ferroptosis on endometrial cancer. In this study, we made a comprehensive review of the relevant articles published to get deep insights in the association of ferroptosis with endometrial cancer and to present a summary of the roles of different ferroptosis-associated genes. Accordingly, we made an evaluation of the relationships between the ferroptosis-associated genes and TNM stage, tumor grade, histological type, primary therapy outcome, invasion and recurrence of tumor, and accessing the different prognosis molecular typing based on ferroptosis-associated genes. In addition, we presented an introduction of the common drugs, which targeted ferroptosis in endometrial cancer. In so doing, we clarified the opportunities and challenges of ferroptosis activator application in treating endometrial cancer, with a view to provide a novel approach to the disease.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhang
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Suqin Wu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| | - Zhou Liu
- Department of Gynecology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Gynecology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Suqin Wu, ; Zhou Liu,
| |
Collapse
|
19
|
Jiang H, Sun J, Liu F, Wu X, Wen Z. An Immune-Related Long Noncoding RNA Pair as a New Biomarker to Predict the Prognosis of Patients in Breast Cancer. Front Genet 2022; 13:895200. [PMID: 35812755 PMCID: PMC9257047 DOI: 10.3389/fgene.2022.895200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune-related long non-coding RNAs (irlncRNAs) might remodel the tumor immune microenvironment by changing the inherent properties of tumor cells and the expression of immune genes, which have been used to predict the efficacy of immunotherapy and the prognosis of various tumors. However, the value of irlncRNAs in breast cancer (BRCA) remains unclear.Materials and Methods: Initially, transcriptome data and immune-related gene sets were downloaded from The Cancer Genome Atlas (TCGA) database. The irlncRNAs were extracted from the Immunology Database and Analysis Portal (ImmPort) database. Differently expressed irlncRNAs (DEirlncRNAs) were further identified by utilizing the limma R package. Then, univariate and multivariate Cox regression analyses were conducted to select the DEirlncRNAs associated with the prognosis of BRCA patients. In addition, the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were performed to determine the DEirlncRNA pairs with the independent prediction capability of prognosis in BRCA patients. Finally, the chosen DEirlncRNA pair would be evaluated in terms of survival time, clinicopathological characteristics, tumor-infiltrating immune cells, immune checkpoints (ICs), signaling pathways, and potential small-molecule drugs.Results: A total of 21 DEirlncRNA pairs were extracted, and among them, lncRNA MIR4435-2HG and lncRNA U62317.1 were chosen to establish a risk signature that served as an independent prognostic biomarker in BRCA patients. Patients in the high-risk group had a worse prognosis than those in the low-risk group, and they also had an abundance of infiltration of CD4+ T and CD8+ T cells to enhance the immune response to tumor cells. Furthermore, the risk signature showed a strong correlation with ICs, signaling pathways, and potential small-molecule drugs.Conclusion: Our research revealed that the risk signature independent of specific DEirlncRNA pair expression was closely associated with the prognosis and tumor immune microenvironment in BRCA patients and had the potential to function as an independent prognostic biomarker and a predictor of immunotherapy for BRCA patients, which would provide new insights for BRCA accurate treatment.
Collapse
Affiliation(s)
- Hanwen Jiang
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fucong Liu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xincai Wu
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaohui Wen
- Department of Neurology, Brain Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Zhaohui Wen,
| |
Collapse
|
20
|
Illarregi U, Telleria J, Bilbao‑Aldaiturriaga N, Lopez‑Lopez E, Ballesteros J, Martin‑Guerrero I, Gutierrez‑Camino A. lncRNA deregulation in childhood acute lymphoblastic leukemia: A systematic review. Int J Oncol 2022; 60:59. [DOI: 10.3892/ijo.2022.5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Unai Illarregi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jaione Telleria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Bilbao‑Aldaiturriaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Elixabet Lopez‑Lopez
- Department of Biochemistry and Molecular Biology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Ballesteros
- Department of Neuroscience, University of The Basque Country (UPV/EHU) and CIBERSAM, Medical School, 48940 Leioa, Spain
| | - Idoia Martin‑Guerrero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Angela Gutierrez‑Camino
- Division of Hematology‑Oncology, CHU Sainte‑Justine Research Center, Montreal, QC H3T 1C5, Canada
| |
Collapse
|