1
|
Moon HR, Yun JM. p-Coumaric acid modulates cholesterol efflux and lipid accumulation and inflammation in foam cells. Nutr Res Pract 2024; 18:774-792. [PMID: 39651322 PMCID: PMC11621437 DOI: 10.4162/nrp.2024.18.6.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a primary cause of cardiovascular disease associated with inflammation and lipid metabolism disorders. The accumulation of cholesterol-containing macrophage foam cells characterizes the early stages. The p-coumaric acid (p-CA) contained in vegetables may have various physiological activities. The inhibitory effect of p-CA on foam cell creation in THP-1 macrophages needs clarification. In this study, we explored the impact of p-CA on foam cells by co-treatment with oxidized low-density lipoprotein (ox-LDL) and lipopolysaccharides (LPS), mimicking the development of atherosclerosis in vitro and studied the regulation of its underlying mechanisms. MATERIALS/METHODS THP-1 cells differentiated by phorbol 12-myristate 13-acetate (1 μM) for 48 h and treated in the absence or presence of p-CA for 48 h. THP-1 macrophages were treated with combined ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability. Oil red O staining allowed us to observe lipid accumulation. Western blotting and quantitative polymerase chain reactions quantified corresponding proteins and mRNA. RESULTS Ox-LDL and LPS for 24 h enhanced the lipid accumulation using Oil red O in treated foam cells. By contrast, p-CA treatment inhibited lipid accumulation. p-CA significantly upregulated cholesterol efflux-related genes such as ATP binding cassette transporter A1, liver-X-receptor α and peroxisome proliferator-activated receptor gamma expression. Moreover, p-CA decreased lipid accumulation-related gene such as lectin-like oxidized low-density lipoprotein receptor-1, cluster of differentiation 36 and scavenger receptor class A1 expression. Combined ox-LDL and LPS increased nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and pro-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin [IL]-6) activation and expression compared with untreated. p-CA suppressed this increased expression of NF-κB and COX-2, TNF-α and IL-6. CONCLUSION p-CA may play a vital role in atherosclerosis inhibition and protective effects by suppressing lipid accumulation and foam cell creation by increasing cholesterol efflux and can be potential agents for preventing atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
2
|
Wang Y, Chen Y, Zhou T, Li J, Zhang N, Liu N, Zhou P, Mao Y. A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair. J Nanobiotechnology 2024; 22:702. [PMID: 39533396 PMCID: PMC11558876 DOI: 10.1186/s12951-024-02996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Repairing bone defects is a complex cascade reaction process, as immune system regulation, vascular growth, and osteogenic differentiation are essential. Thus, developing a tissue-engineered biomaterial that caters to the complex healing process of bone regeneration remains a major clinical challenge. In the study, Ca2+-TA-rGO (CTAG)/GelMA hydrogels were synthesized by binding Ca2+ using metal chelation to graphene oxide (GO) nanosheets reduced by tannic acid (TA-rGO) and doping them into gelatin methacrylate (GelMA) hydrogels. TA and rGO exhibited biocompatibility and immunomodulatory properties in this composite, while Ca2+ promoted bone formation and angiogenesis. This novel nanocomposite hydrogel demonstrated good mechanical properties, degradability, and conductivity, and it could achieve slow Ca2+ release during bone regeneration. Both in vitro and in vivo experiments revealed that CTAG/GelMA hydrogel modulated macrophage reprogramming and induced a shift from macrophages to healing-promoting M2 macrophages during the inflammatory phase, promoted vascular neovascularization, and facilitated osteoblast differentiation during bone formation. Moreover, CTAG/GelMA hydrogel could downregulate the NF-κB signaling pathway, offering new insights into regulating macrophage reprogramming-osteogenic crosstalk. Conclusively, this novel multifunctional nanocomposite hydrogel provides a multistage treatment for bone and orchestrates macrophage reprogramming-osteogenic crosstalk to boost bone repair.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Yedan Chen
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Tao Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Jingze Li
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Na Zhang
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Na Liu
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China.
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
3
|
Fan Y, Zhang X, Zhao J, Chen S, Liang J. Cancer cell membrane-camouflaged curcumin nanoparticles trigger ferroptosis for accurate gastric cancer therapy. Eur J Pharm Biopharm 2024; 204:114509. [PMID: 39362384 DOI: 10.1016/j.ejpb.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Curcumin (CUR) is a hydrophobic polyphenol with considerable antitumor efficiency, but its clinical application is limited because of its poor solubility and low stability in aqueous solution and lack of targeting in vivo. Herein, we fabricated a tumor-targeting drug delivery system by loading CUR and cloaking homologous cancer cell membrane (CM) onto mesoporous silica NPs (MSN-CUR@CM). Characterization analysis showed that MSN-CUR@CM with a size of approximately 70 nm showed high water solubility and biocompatibility. Besides, MSN-CUR@CM exhibited tumor-targeting and excellent anti-gastric cancer efficiency both in vitro and in vivo owing to the cellular self-recognition of CM. In the established xenograft tumor nude mouse model, it was still significantly drug accumulated at the tumor site 72 h post administration. In addition, the mean tumor volume and weight of the MSN-CUR@CM group were was 3.97 and 7.47 times smaller than those of the CUR group. Ferroptosis, a type of non-apoptotic regulated cell death accompanied by iron-dependent lipid peroxidation, was triggered by MSN-CUR@CM. Further analysis demonstrated that MSN-CUR@CUR upregulated heme oxygenase (HO-1) levels whereas it downregulated the expression of glutathione peroxidase 4 (GPX4) in SGC7901 cells in vitro, indicating that the canonical and noncanonical ferroptosis pathways were regulated by MSN-CUR@CM. In conclusion, our study demonstrated that MSN-CUR@CM with high water solubility, biocompatibility, and tumor-targeting properties inhibited gastric cancer both in vitro and in vivo by triggering ferroptosis and provided an admirable cancer therapy efficacy.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiqin Zhang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Suning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
4
|
Jin N, Qiu Y, Zhang K, Fang Y, Qu S, Zhu L, Li H, Nie B. Sacubitril/valsartan alleviates myocardial infarction-induced inflammation in mice by promoting M2 macrophage polarisation via regulation of PI3K/Akt pathway. Acta Cardiol 2024; 79:768-777. [PMID: 39257342 DOI: 10.1080/00015385.2024.2400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Macrophage polarisation-mediated inflammation plays a critical role in ventricular remodelling after myocardial infarction (MI). Sacubitril/Valsartan (Sac/Val) is an angiotensin receptor-neprilysin inhibitor that has shown beneficial effects on MI and heart failure. This study aims to further explore the mechanisms by which Sac/Val exerts its protective effects against MI. METHODS A mouse MI model was induced by ligating the left anterior descending coronary artery, followed by Sac/Val administration. TTC staining and Masson trichrome staining were employed for estimating myocardial infarct size and fibrosis, respectively. The expression levels of proinflammatory factors were determined by ELISA and RT-qPCR. Flow cytometry and immunofluorescence staining were implemented to detect CD206-positive cell infiltration in mouse hearts. Western blotting was conducted to assess protein levels of Arg1, pro-fibrotic factors, and PI3K/Akt signalling-related markers. RESULTS Sac/Val treatment reduced myocardial infarct size and fibrosis in mice after MI. Sac/Val administration decreased proinflammatory cytokine production and facilitated M2 macrophage polarisation in MI mouse cardiac tissues. Sac/Val activated PI3K/Akt signalling in MI mouse hearts. Blocking PI3K/Akt signalling counteracted Sac/Val-mediated protective effects in MI mice. CONCLUSION Sac/Val ameliorates MI-induced inflammation by facilitating M2 macrophage polarisation and activating PI3K/Akt signalling.
Collapse
Affiliation(s)
- Nan Jin
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Qiu
- Department of General practice, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Kuanxin Zhang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Fang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Lu Zhu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Han Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bin Nie
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
6
|
Zhu Z, Wang M, Lu S, Dai S, Liu J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1434654. [PMID: 39104386 PMCID: PMC11298811 DOI: 10.3389/fphar.2024.1434654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Heart failure (HF) has a severe impact on public health development due to high morbidity and mortality and is associated with imbalances in cardiac immunoregulation. Macrophages, a major cell population involved in cardiac immune response and inflammation, are highly heterogeneous and polarized into M1 and M2 types depending on the microenvironment. M1 macrophage releases inflammatory factors and chemokines to activate the immune response and remove harmful substances, while M2 macrophage releases anti-inflammatory factors to inhibit the overactive immune response and promote tissue repair. M1 and M2 restrict each other to maintain cardiac homeostasis. The dynamic balance of M1 and M2 is closely related to the Traditional Chinese Medicine (TCM) yin-yang theory, and the imbalance of yin and yang will result in a pathological state of the organism. Studies have confirmed that TCM produces positive effects on HF by regulating macrophage polarization. This review describes the critical role of macrophage polarization in inflammation, fibrosis, angiogenesis and electrophysiology in the course of HF, as well as the potential mechanism of TCM regulation of macrophage polarization in preventing and treating HF, thereby providing new ideas for clinical treatment and scientific research design of HF.
Collapse
Affiliation(s)
- Zheqin Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shenghua Lu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Sisi Dai
- Hunan University of Chinese Medicine, Changsha, China
| | - Jianhe Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Tong MJ, Song MX, Liu Z, Yu W, Wang CZ, Cai CD, Zhang YK, Zhang YQ, Wang LP, Zhu ZZ, Yin XF, Yan ZQ. A Bionic Thermosensitive Sustainable Delivery System for Reversing the Progression of Osteoarthritis by Remodeling the Joint Homeostasis. Adv Healthc Mater 2024; 13:e2303792. [PMID: 38394066 DOI: 10.1002/adhm.202303792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Although the pathogenesis of osteoarthritis (OA) is unclear, inflammatory cytokines are related to its occurrence. However, few studies focused on the therapeutic strategies of regulating joint homeostasis by simultaneously remodeling the anti-inflammatory and immunomodulatory microenvironments. Fibroblast growth factor 18 (FGF18) is the only disease-modifying OA drug (DMOAD) with a potent ability and high efficiency in maintaining the phenotype of chondrocytes within cell culture models. However, its potential role in the immune microenvironment remains unknown. Besides, information on an optimal carrier, whose interface and chondral-biomimetic microenvironment mimic the native articular tissue, is still lacking, which substantially limits the clinical efficacy of FGF18. Herein, to simulate the cartilage matrix, chondroitin sulfate (ChS)-based nanoparticles (NPs) are integrated into poly(D, L-lactide)-poly(ethylene glycol)-poly(D, L-lactide) (PLEL) hydrogels to develop a bionic thermosensitive sustainable delivery system. Electrostatically self-assembled ChS and ε-poly-l-lysine (EPL) NPs are prepared for the bioencapsulation of FGF18. This bionic delivery system suppressed the inflammatory response in interleukin-1β (IL-1β)-mediated chondrocytes, promoted macrophage M2 polarization, and inhibited M1 polarization, thereby ameliorating cartilage degeneration and synovitis in OA. Thus, the ChS-based hydrogel system offers a potential strategy to regulate the chondrocyte-macrophage crosstalk, thus re-establishing the anti-inflammatory and immunomodulatory microenvironment for OA therapy.
Collapse
Affiliation(s)
- Min-Ji Tong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meng-Xiong Song
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen-Zhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuan-Dong Cai
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Kai Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Peng Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiao-Fan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Zuo-Qin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
8
|
Mirfakhraie N, Shoorei H, Abedpour N, Javanmard MZ. Co-treatment with bone marrow-derived mesenchymal stem cells and curcumin improved angiogenesis in myocardium in a rat model of MI. Mol Biol Rep 2024; 51:261. [PMID: 38302805 DOI: 10.1007/s11033-023-09180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The cardioprotective properties of mesenchymal stem cells and the therapeutic potential of curcumin (CUR) have been explored. Combining these approaches may enhance stem cell effectiveness and expedite healing. This study aimed to investigate the synergistic effects of co-treating bone marrow mesenchymal stem cells (BMSCs) with curcumin on vascular endothelial growth factor (VEGF) levels, in a rat model of myocardial ischemia (MI). METHODS AND RESULTS Sixty-five male rats were divided into four groups: G1 (healthy control), G2 (MI induced by isoproterenol hydrochloride), G3 (treated with BMSCs), and G4 (co-treated with curcumin and BMSCs). Blood and tissue samples were collected at specific time points (day 1, 7, 15 and 21) after MI induction. Serum levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin I (cTnI), aspartate aminotransferase (AST), CK-MB and VEGF were measured. VEGF mRNA and protein expression were evaluated using RT-qPCR and Western blot techniques. Histopathological assessments were performed using H&E staining and CD31 immunofluorescence staining. VEGF expression significantly increased on days 7 and 15 in the CUR-BMSCs group, peaking on day 7. Western blot analysis confirmed elevated VEGF protein expression on days 7 and 15 post-MI. ELISA results demonstrated increased serum VEGF levels on days 7 and 15, reaching the highest level on day 7 in CUR-BMSCs-treated animals. Treated groups showed lower levels of LDH, AST, CK, CK-MB and cTnI compared to the untreated MI group. H&E staining revealed improved myocardial structure, increased formation of new capillaries, in both treatment groups compared to the MI group. CONCLUSION Combining curcumin with BMSCs promotes angiogenesis in the infarcted myocardium after 15 days of MI induction. These findings suggest the potential of this combined therapy approach for enhancing cardiac healing and recovery.
Collapse
Affiliation(s)
- Niki Mirfakhraie
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Abedpour
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Zeng YF, Guo QH, Wei XY, Chen SY, Deng S, Liu JJ, Yin N, Liu Y, Zeng WJ. Cardioprotective effect of curcumin on myocardial ischemia/reperfusion injury: a meta-analysis of preclinical animal studies. Front Pharmacol 2023; 14:1184292. [PMID: 37284318 PMCID: PMC10239943 DOI: 10.3389/fphar.2023.1184292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Objective: This meta-analysis aimed to determine the efficacy of curcumin in preventing myocardial ischemia/reperfusion (I/R) injury in animal models. Methods: Studies published from inception to January 2023 were systematically searched in databases including PubMed, Web of Science, Embase, China's National Knowledge Infrastructure (CNKI), Wan-Fang database, and VIP database (VIP). The SYRCLE's RoB tool was used to determine methodological quality. Sensitivity analysis and subgroup analysis were performed when there was high heterogeneity. Publication bias was assessed using a funnel plot. Results: Thirty-seven studies involving 771 animals were included in this meta-analysis with methodology quality scores ranging from 4 to 7. The results indicated that curcumin treatment significantly improved myocardial infarction size standard mean difference (SMD) = -5.65; 95% confidence interval (CI): 6.94, -4.36; p < 0.01; I2 = 90%). The sensitivity analysis for infarct size showed that the results were stable and reliable. However, the funnel plot was asymmetric. The subgroup analysis included species, animal model, dose, administration, and duration. The results showed that the subgroup dose was statistically significant between subgroups. In addition, curcumin treatment improved cardiac function, myocardial injury enzymes, and oxidative stress levels in animal models of myocardial I/R injury. The funnel plot revealed that there is publication bias for creatine kinase and lactate dehydrogenase. Finally, we performed a meta-analysis of inflammatory cytokines and apoptosis index. The results showed that curcumin treatment downregulated serum inflammatory cytokine levels and myocardial apoptosis index. Conclusion: This meta-analysis suggests that curcumin has excellent potential for the treatment of myocardial I/R injury in animal models. However, this conclusion needs to be further discussed and verified in large animal models and human clinical trials. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022383901.
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Hao Guo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Yu Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Jia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ni Yin
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Pharmacy, Hunan Aerospace Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
11
|
Hu ZC, Lu JQ, Zhang TW, Liang HF, Yuan H, Su DH, Ding W, Lian RX, Ge YX, Liang B, Dong J, Zhou XG, Jiang LB. Piezoresistive MXene/Silk fibroin nanocomposite hydrogel for accelerating bone regeneration by Re-establishing electrical microenvironment. Bioact Mater 2023; 22:1-17. [PMID: 36203961 PMCID: PMC9513113 DOI: 10.1016/j.bioactmat.2022.08.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The electrical microenvironment plays an important role in bone repair. However, the underlying mechanism by which electrical stimulation (ES) promotes bone regeneration remains unclear, limiting the design of bone microenvironment–specific electroactive materials. Herein, by simple co-incubation in aqueous suspensions at physiological temperatures, biocompatible regenerated silk fibroin (RSF) is found to assemble into nanofibrils with a β-sheet structure on MXene nanosheets, which has been reported to inhibit the restacking and oxidation of MXene. An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration. This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer, which can potentially be utilized to monitor the electrophysiological microenvironment. RNA sequencing is performed to explore the underlying mechanisms, which can activate Ca2+/CALM signaling in favor of the direct osteogenesis process. ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages, as well as stimulating the neogenesis and migration of endotheliocytes. Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo. Collectively, the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis, regulating immune microenvironment and neovascularization under ES, leading to re-establish electrical microenvironment for bone regeneration. MXene nanosheets could direct the selective growth of silk nanofibrils. Prepared MXene/RSF hydrogel exhibited good conductivity and sensing ability. The electroactive hydrogel could promote osteogenic differentiation of BMSCs by activating the Ca2+/CALM signaling pathway. The conductive system created an osteoblast–macrophage–endotheliocyte virtuous circle for bone microenvironment.
Collapse
|
12
|
Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci 2023; 11:3197-3213. [PMID: 36928127 DOI: 10.1039/d2bm01338j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chang Liu
- Department of Orthopedic Surgery, The Lingnan Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jiahui Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuanzhi Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qing Huang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. .,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
13
|
Pang BY, Wang YH, Ji XW, Leng Y, Deng HB, Jiang LH. Systematic review and meta-analysis of the intervention effect of curcumin on rodent models of myocardial infarction. Front Pharmacol 2022; 13:999386. [PMID: 36330084 PMCID: PMC9623107 DOI: 10.3389/fphar.2022.999386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to evaluate the intervention effect of curcumin in myocardial infarction rodent models. Methods: A systematic retrieval of relevant studies on curcumin intervention in rats or mice myocardial infarction models was conducted, and the data were extracted. The outcome indicators included biochemical blood indicators, such as creatine kinase (CK), creatine kinase isoenzyme (CK-MB), malondialdehyde (MDA), lactate dehydrogenase (LDH) and superoxide dismutase (SOD), as well as cardiac tissue structure indicators, such as left ventricular weight to body weight ratio (LVW/BW), apoptosis index, left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic diameter (LVESD), and myocardial infarction area, and hemodynamic indexes, such as systolic blood pressure (SBP), diastolic blood pressure (DBP), left ventricular end-diastolic pressure (LVEDP), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), maximum rate of left ventricular pressure rise (+dp/dtmax), and maximum rate of left ventricular pressure decline (-dp/dtmax). These results were then analyzed by meta-analysis. Studies were evaluated for methodological quality using the syrcle's bias risk tool. Results: A total of 24 studies were included in the meta-analysis. The quality assessment of included studies revealed that the evidence was low quality and none of studies was judged as having a low risk of bias across all domains. The results revealed that curcumin could reduce CK-MB, CK, LDH, and MDA levels. They also revealed that it could lower SBP, DBP, LVEDP, LVW/BW, apoptosis index, LVEDD, LVESD, and myocardial infarction area and increase LVEF, LVFS, +dp/dtmax, and-dp/dtmax. However, it had no significant impact on the heart rate and the levels of SOD in the models. Conclusion: Curcumin alleviates myocardial injury and oxidative stress in myocardial infarction rodent models in terms of blood biochemistry indicators, improves the diastolic and systolic capacity of the ventricle in terms of hemodynamic indexes, and reduces the necrosis and apoptosis of cardiomyocytes in terms of tissue structure. The methodological quality of the studies was low and additional research is warranted.
Collapse
Affiliation(s)
- Bing-Yao Pang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ya-Hong Wang
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xing-Wang Ji
- Department of Emergency, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hou-Bo Deng
- Department of Hepatology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Li-Hong Jiang
- Department of Cardiovascular Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Wang YM, Zhang JJ, Wu BW, Cao XY, Li H, Chen TQ, Huang YR, Shen XY, Li J, You Y, Shi HM. IL-37 improves mice myocardial infarction via inhibiting YAP-NLRP3 signaling mediated macrophage programming. Eur J Pharmacol 2022; 934:175293. [PMID: 36167152 DOI: 10.1016/j.ejphar.2022.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Myocardial infarction is the highest cause of cardiovascular death. Previous studies found that patients with myocardial infarction have elevated serum IL-37 and IL-37 treatment significantly alleviates adverse remodeling in myocardial infarction mice. However, the underlying mechanism of IL-37 in myocardial infarction is still unknown. Here we explored the underlying mechanism of IL-37 in attenuating myocardial infarction. METHODS The myocardial infarction mice model was constructed by left anterior descending ligation and then submitted to recombinant IL-37 administration. The histology and cardiac function were detected by HE & Masson staining and echocardiography, respectively. The macrophage phenotypes were analyzed by flow cytometry and real-time PCR. The cytokines in serum and cell culture supernatant were determined by ELISA. In addition, THP-1 cells were used in vitro to investigate the underlying mechanisms. RESULTS Infarcted mice showed increased inflammatory cell infiltration and impaired cardiac function. IL-37 treatment alleviated pro-inflammatory macrophage infiltration, tissue injury, and collagen deposition in hearts on day 3 and 7 after infarction in mice. In addition, IL-37 application modulated the balance between M1 and M2 macrophages in infarcted hearts. In vitro, THP-1 cell line polarization was also regulated by IL-37, companied by YAP phosphorylation and NLRP3 inactivation. Verteporfin, a YAP inhibitor, could abolish IL-37-induced NLRP3 inhibition and M2 macrophage polarization. CONCLUSION Our results demonstrated that IL-37 achieves a favorable therapeutical function on myocardial infarction by modulating YAP-NLRP3 mediated macrophage programming, providing a promising drug for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China; Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Jin Zhang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bang-Wei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Yue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, No. 188, Hengren Road, Yangpu Aera, Shanghai, 200438, China
| | - Tong-Qing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Yu-Ran Huang
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China.
| | - Hai-Ming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Xiang X, Wu Y, Lv XQ, Xu RQ, Liu Y, Pan SH, He M, Lai GQ. Hepatitis B Virus Infection Promotes M2 Polarization of Macrophages by Upregulating the Expression of B7x In Vivo and In Vitro. Viral Immunol 2022; 35:597-608. [PMID: 36099202 DOI: 10.1089/vim.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies have reported that hepatitis B virus (HBV) infection is mediated by macrophages and that the B7x (B7-H4, VTCN-1) protein plays an important role in immune regulation in HBV-associated hepatocellular carcinoma (HBV-HCC). However, the relationship among HBV, macrophages, and B7x has not been studied. In this study, HBV-infected mouse model and coculture of HBV cell lines and macrophages were used to observe the changes in macrophages and the role of B7x after HBV infection. The expression of HBV markers (HBeAg, HBsAg), negative regulator of immunity (B7x), T-helper 17 (Th17)/T-regulatory (Treg)-related cytokines, and macrophage markers, as well as changes in the apoptosis and cell cycle of macrophages were analyzed through reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blot, and flow cytometry. The expression of HBsAg, HBeAg, and B7x increased and the levels of macrophage surface marker and Treg cells secrete related cytokines (IL-10 and TGF-β) were altered after HBV infection both in vivo and in vitro. Apoptosis of macrophages increased, and cell cycle arrest occurred in vitro. These effects, except those in the cell cycle, were reversed when B7x was knocked down. Thus, HBV infection can promote the expression of B7x, which in turn regulates the Th17/Treg balance and affects the expression of HBsAg and HBeAg. The mechanism used by B7x likely involves the promotion of macrophage polarization and apoptosis. These results suggest that B7x is a novel target for HBV immunotherapy.
Collapse
Affiliation(s)
- Xia Xiang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Lv
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Ru-Qing Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Suo-Han Pan
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Guo-Qi Lai
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Fan Y, Zhang X, Tong Y, Chen S, Liang J. Curcumin against gastrointestinal cancer: A review of the pharmacological mechanisms underlying its antitumor activity. Front Pharmacol 2022; 13:990475. [PMID: 36120367 PMCID: PMC9478803 DOI: 10.3389/fphar.2022.990475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal cancer (GIC) poses a serious threat to human health globally. Curcumin (CUR), a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, has shown reliable anticancer function and low toxicity, thereby offering broad research prospects. Numerous studies have demonstrated the pharmacological mechanisms underlying the effectiveness of CUR against GIC, including the induction of apoptosis and autophagy, arrest of the cell cycle, inhibition of the epithelial–mesenchymal transition (EMT) processes, inhibition of cell invasion and migration, regulation of multiple signaling pathways, sensitization to chemotherapy and reversal of resistance to such treatments, and regulation of the tumor survival environment. It has been confirmed that CUR exerts its antitumor effects on GIC through these mechanisms in vitro and in vivo. Moreover, treatment with CUR is safe and tolerable. Newly discovered types of regulated cell death (RCD), such as pyroptosis, necroptosis, and ferroptosis, may provide a new direction for research on the efficacy of CUR against GIC. In this review, we discuss the recently found pharmacological mechanisms underlying the effects of CUR against GIC (gastric and colorectal cancers). The objective is to provide a reference for further research on treatments against GIC.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiqin Zhang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuxin Tong
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jingjing Liang,
| |
Collapse
|
17
|
Cox FF, Misiou A, Vierkant A, Ale-Agha N, Grandoch M, Haendeler J, Altschmied J. Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022; 11:cells11030342. [PMID: 35159155 PMCID: PMC8833931 DOI: 10.3390/cells11030342] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) contribute to a large part of worldwide mortality. Similarly, two of the major risk factors for these diseases, aging and obesity, are also global problems. Aging, the gradual decline of body functions, is non-modifiable. Obesity, a modifiable risk factor for CVDs, also predisposes to type 2 diabetes mellitus (T2DM). Moreover, it affects not only the vasculature and the heart but also specific fat depots, which themselves have a major impact on the development and progression of CVDs. Common denominators of aging, obesity, and T2DM include oxidative stress, mitochondrial dysfunction, metabolic abnormalities such as altered lipid profiles and glucose metabolism, and inflammation. Several plant substances such as curcumin, the major active compound in turmeric root, have been used for a long time in traditional medicine and for the treatment of CVDs. Newer mechanistic, animal, and human studies provide evidence that curcumin has pleiotropic effects and attenuates numerous parameters which contribute to an increased risk for CVDs in aging as well as in obesity. Thus, curcumin as a nutraceutical could hold promise in the prevention of CVDs, but more standardized clinical trials are required to fully unravel its potential.
Collapse
Affiliation(s)
- Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Angelina Misiou
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Annika Vierkant
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| |
Collapse
|