1
|
Wang P, Liu S, Zhao S, Wang Y. Structure-based discovery of a new type of scaffold compound as binding competitors for protein-bound Uremic Toxins. Sci Rep 2024; 14:28152. [PMID: 39548203 PMCID: PMC11568142 DOI: 10.1038/s41598-024-78766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-bound uremic toxins (PBUTs) are the main cause of uremia, but traditional hemodialysis is ineffective in removing them because of their strong ability to bind to human serum albumin (HSA), highlighting the need for new treatments. In this study, first, structure-based docking was used to screen a diverse library of 200,376 virtual compounds against the active sites I and II. After two rounds of docking screening, 3944 candidate molecules were obtained. Second, 23 candidate molecules were obtained after ADMET prediction and toxicity analysis. Five candidate molecules were finally obtained after visual analysis and MM-PBSA calculations. We subsequently assessed their competitive displacement efficiency through a microdialysis experiment, and the results revealed that ZINC000008791789, ZINC000012297018, and ZINC000012296493 are promising binding competitors for PBUTs, as they have higher dialysis efficiency than the optimal displacer LA, approximately double the dialysis efficiency. The other two molecules, ZINC000031161007 and ZINC000004090361, although less efficient than LA, still outperformed the control group. Notably, four of them shared the same molecular scaffold, and three of them contained a flavonoid group. These findings provide a foundation for the development of more effective PBUT binding competitors, potentially benefiting uremia patients in the future.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, P.R., China
- The Pharmacy School of Binzhou Medical University, Yantai, 264003, P.R., China
| | - Shasha Liu
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, P.R., China
| | - Shengtian Zhao
- Department of Urology, Binzhou Medical University Hospital, Yantai, 256603, P.R., China.
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, P.R., China.
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
2
|
Wei J, Liu Z, Li M, Du L, Zhu X, Leng Y, Han C, Xu Q, Zhang C. Based on UPLC-Q-TOF/MS and Network Pharmacology to Explore the Mechanism of Qingre Lishi Decoction in the Treatment of Psoriasis. Drug Des Devel Ther 2024; 18:3871-3889. [PMID: 39219696 PMCID: PMC11366256 DOI: 10.2147/dddt.s467066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Psoriasis is an immune-mediated chronic inflammatory disease. Qingre Lishi Decoction (QRLSD) has achieved great clinical effect in the treatment of psoriasis. However, the potential bioactive components and the mechanisms are yet unclear. Aim To analyze the serum parameters of rats fed with QRLSD, screen out the active components of QRLSD, and explore the potential targets and pathway of QRLSD in the treatment of psoriasis. Materials and Methods The active components of serum containing QRLSD were analyzed using ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The targets of QRLSD in the treatment of psoriasis were predicted by network pharmacology and molecular docking. In vitro experiments verified the underlying mechanism. Results By UPLC-Q-TOF/MS, 15 prototype components and 22 metabolites were identified in serum containing QRLSD. Subsequently, 260 chemical composition targets and 218 psoriasis targets were overlapped to obtain 23 intersection targets, including LGALS3, TNF, F10, DPP4, EGFR, MAPK14, STAT3 and others. TNF, IL-10, GAPDH, STAT3, EGFR, ITGB1, LGALS3 genes were identified as potential drug targets in the PPI network analyzed by CytoHubba. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that QRLSD may improve psoriasis by regulating immune and inflammatory pathways, the cytokine mediated signal transduction pathways and other signaling pathways. Molecular docking results showed that the main active components of the serum containing QRLSD had higher affinities for TNF and LGALS3. In vitro experiments confirmed that QRLSD may decrease levels of inflammatory cytokines by suppressing the NF-κB signaling pathway activated by TNF-α in human keratinocytes. Conclusion This study explores the potential compounds, targets and signaling pathways of QRLSD in the treatment of psoriasis, which will help clarify the efficacy and mechanism of QRLSD.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Zhaoyang Liu
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Dermato-Venereology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Mingming Li
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Lingyun Du
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Xia Zhu
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yi Leng
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Changyu Han
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Qingqing Xu
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Chunhong Zhang
- Department of Dermato-Venereology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Boungou-Tsona G, Gainche M, Decombat C, Ripoche I, Bikindou K, Delort L, Caldefie-Chézet F, Loumouamou A, Chalard P. Chemical Profile, Antioxidant and Anti-Inflammatory Potency of Extracts of Vitex madiensis Oliv. and Crossopteryx febrifuga (Afzel ex G. Don). PLANTS (BASEL, SWITZERLAND) 2023; 12:386. [PMID: 36679099 PMCID: PMC9864984 DOI: 10.3390/plants12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vitex madiensis Oliv. (Lamiaceae) and Crossopteryx febrifuga (Rubiaceae), two plants commonly used in traditional African medicines to treat malaria and pain, were studied either to determine their chemical profiles or to evaluate their antioxidant and anti-inflammatory activities. In this study, we investigated leaves, trunk bark, root bark and fruits methanolic extracts of both plants in order to find out which part of the plant is responsible for the activity. The analyses of the chemical profiles allowed us to confirm the presence of several ecdysteroids, especially 20-hydroxyecdysone in some parts of V. madiensis and to highlight the presence of organic acids and phenol derivatives in C. febrifuga. Among the four parts of the plants studied, only the fruits extract of C. febrifuga could present anti-inflammatory activity by decreasing ROS production. The leaves and trunk bark extracts of V. madiensis showed significant free radical scavenging activity compared to ascorbic acid, and the same extracts decrease ROS production significantly. The activity of these two extracts could be explained by the presence of ecdysteroids and flavonoids. The ROS production inhibition of V. madiensis is particularly interesting to investigate with further analyses.
Collapse
Affiliation(s)
- Ghislaine Boungou-Tsona
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Maël Gainche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Isabelle Ripoche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Kevin Bikindou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Laetitia Delort
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Aubin Loumouamou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Pierre Chalard
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Xue M, Zhao Y, Cui Y, Yang J, Wang Y, Chai X. Quantitative Analysis of Multicomponents in Qufeng Zhitong Capsule and Application of Network Pharmacology to Explore the Anti-Inflammatory Activity of Focused Compounds. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:4229945. [PMID: 35815311 PMCID: PMC9259231 DOI: 10.1155/2022/4229945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Qufeng Zhitong capsule (QZC) is a well-known Chinese patent medicine that has been widely applied for the clinical treatment of rheumatoid arthritis and other inflammatory diseases. To date, its material basis is still unclear, which has greatly limited its clinical application. In this study, by taking advantage of ultra-high-performance liquid chromatography tandem Q-Exactive Orbitrap high-resolution mass spectrometry, 16 chemical components such as gallic acid, protocatechuic acid, and neochlorogenic acid in QZC were characterized and unambiguously identified based on comparison with the corresponding reference standards. In addition, the correlation between the focused components and their corresponding raw herbs from QZC prescription was investigated. For the first time, the relationship between the components mentioned above and their anti-inflammatory activity was explored via network pharmacology analysis, and a visualized network of "medicinal materials-QZC-compounds-targets-pathways" was established. Based on the brief prediction results of network pharmacological analysis, ultra-performance liquid chromatography coupled with photodiode array detector method was validated in terms of linearity, limit of detection, limit of quantification, precision, repeatability, stability, and recovery test and was successfully employed to determine 16 compounds in 28 batches of QZCs, which confirmed the feasibility and reliability of the established method for the quantitative analysis of 16 compounds in QZC. Considering the content and bioactivity of the tested components, four compounds were recommended as candidate indicators for quality evaluation ultimately. The potential value of this study could not only support a quality evaluation of QZC but also provide a theoretical basis for further in-depth research of QZC in clinical research.
Collapse
Affiliation(s)
- Mengjie Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuting Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Wang Z, Wang Z, Jiang M, Yang J, Meng Q, Guan J, Xu M, Chai X. Qualitative and Quantitative Evaluation of Chemical Constituents from Shuanghuanglian Injection Using Nuclear Magnetic Resonance Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7763207. [PMID: 35309716 PMCID: PMC8926469 DOI: 10.1155/2022/7763207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
By employing nuclear magnetic resonance (NMR), we implemented a chemical research on Shuanghuanglian injection (SHLI) and identified 17 components, including eight primary metabolites and nine secondary metabolites. Guided by the approach of network pharmacology, the potential activities were briefly predicted for seven primary metabolites except for formic acid, such as anti-inflammation, antioxidation, and cardiovascular protection. The focused primary metabolites were quantified by a proton nuclear magnetic resonance (1H-NMR) method, which was verified with good linearity and satisfactory precision, repeatability, stability, and accuracy (except for myo-inositol with mean recovery at 135.78%). Based on the successfully established method, seven primary metabolites were effectively quantified with a slight fluctuation in 20 batches of SHLIs. The average total content of these compounds was 6.85 mg/mL, accounting for 24.84% in total solid of SHLI. This research provides an alternative method for analysis of primary metabolites and contributes to the quality control of SHLI.
Collapse
Affiliation(s)
- Ziyan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zuoyuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingfen Meng
- Henan Fusen Pharmaceutical Co.,Ltd., Henan 474450, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co.,Ltd., Henan 474450, China
| | - Maoling Xu
- Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Yang X, Zhu G, Zhang Y, Wu X, Liu B, Liu Y, Yang Q, Du W, Liang J, Hu J, Yang P, Ge G, Cai W, Ma G. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by the Popular Flavonoids Baicalein, Baicalin and Hyperoside is responsible for Herbs (Shuang-huang-lian) -Induced Jaundice. Drug Metab Dispos 2022; 50:552-565. [PMID: 35241486 DOI: 10.1124/dmd.121.000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian injections (SHL) and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine including baicalein (BAI), baicalin (BA) and hyperoside (HYP) on bilirubin glucuronidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides (i.e., BMG1, BMG2, BDG) displayed significant differences (P <0.05), specially, the formation of mono-glucuronides (BMGs) was favored regardless whether an inhibitor was absent or presence. SHL, BAI, BA and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation (TBG) were in the range of (7.69 {plus minus} 0.94) μg/mL - (37.09 {plus minus} 2.03) μg/mL, (4.51 {plus minus} 0.27) μM - (20.84 {plus minus} 1.99) μM, (22.36 {plus minus} 5.74) μM - (41.35 {plus minus} 2.40) μM, and (15.16 {plus minus} 1.12) μM - (42.80 {plus minus} 2.63) μM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well-explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. Significance Statement Herbal products and their components (e.g., flavonoids), which been widely used in the whole world, may cause liver injury. As a commonly used herbal products rich in flavonoids, Shuang-huang-lian injections (SHL), easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, hyperoside). Herbs-induced bilirubin-related ADRs and its associated clinical significance should be seriously considered.
Collapse
Affiliation(s)
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ying Zhang
- School of Pharmacy, Fudan University, China
| | - Xubo Wu
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, China
| | - Bei Liu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; School of Pharmacy, Fudan University, China
| | - Ye Liu
- School of Pharmacy, Fudan University, China
| | - Qing Yang
- School of Pharmacy, Fudan University, China
| | - Wandi Du
- School of Pharmacy, Fudan University, China
| | | | - Jiarong Hu
- School of Pharmacy, Fudan University, China
| | - Ping Yang
- School of Pharmacy, Fudan University, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, China
| | | | - Guo Ma
- School of Pharmacy, Fudan University, China
| |
Collapse
|