1
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Huang G, Cai Y, Ren M, Zhang X, Fu Y, Cheng R, Wang Y, Miao M, Zhu L, Yan T. Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy. J Adv Res 2024:S2090-1232(24)00429-6. [PMID: 39353532 DOI: 10.1016/j.jare.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the primary cause of breast cancer-induced death in women. Literature has confirmed the benefits of Salidroside (Sal) in treating TNBC. However, the study about potential therapeutic targets and mechanisms of Sal-anchored TNBC remains limited. OBJECTIVE This study was designed to explore the main targets and potential mechanisms of Sal against TNBC. METHODS Network pharmacology, bioinformatics, and machine learning algorithm strategies were integrated to examine the role, potential targets, and mechanisms of the Sal act in TNBC. MDA-MB-231 cells and tumor-bearing nude mice were chosen for in vitro and in vivo experimentation. Cell viability and cytotoxicity were determined using CCK-8, LDH test, and Calcein-AM/PI staining. Antioxidant defense, lipid peroxidation, and iron metabolism were explored using glutathione, glutathione peroxidase, malondialdehyde (MDA), C11-BODIPY 581/591 probe, and FerroOrange dye. Glutathione peroxidase 4 (GPX4) or stearoyl-CoA desaturase 1 (SCD1) overexpression or nuclear receptor co-activator 4 (NCOA4) deficiency was performed to demonstrate the mechanism of Sal on TNBC. RESULTS The prediction results confirmed that 22 ferroptosis-related genes were identified in Sal and TNBC, revealing that the potential mechanism of the Sal act on TNBC was linked with ferroptosis. Besides, these genes were mainly involved in the mTOR, PI3K/AKT, and autophagy signaling pathway by functional enrichment analysis. The in vitro validation results confirmed that Sal inhibited TNBC cell proliferation by modulating ferroptosis via elevation of intracellular Fe2+ and lipid peroxidation. Mechanistically, Sal sensitized TNBC cells to ferroptosis by inhibiting the PI3K/AKT/mTOR axis, thereby suppressing SCD1-mediated lipogenesis of monounsaturated fatty acids to induce lipid peroxidation, additionally facilitating NCOA4-mediated ferritinophagy to increase intracellular Fe2+ content. The GPX4 or SCD1 overexpression or NCOA4 deficiency results further supported our mechanistic studies. In vivo experimentation confirmed that Sal is vital for slowing down tumor growth by inducing ferroptosis. CONCLUSIONS Overall, this study elucidates TNBC pathogenesis closely linked to ferroptosis and identifies potential biomarkers in TNBC. Meanwhile, the study elucidates that Sal sensitizes TNBC to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy, regulated by PI3K/AKT/mTOR signaling pathways. Our findings provide a theoretical basis for applying Sal to treat TNBC.
Collapse
Affiliation(s)
- Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yawen Cai
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Xiaoyu Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yu Fu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Run Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yingdi Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Mingxing Miao
- National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
3
|
Bo Y, Mu L, Yang Z, Li W, Jin M. Research progress on ferroptosis in gliomas (Review). Oncol Lett 2024; 27:36. [PMID: 38108075 PMCID: PMC10722542 DOI: 10.3892/ol.2023.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Glioma is the most prevalent type of brain tumor characterized by a poor 5-year survival rate and a high mortality rate. Malignant gliomas are commonly treated by surgery, chemotherapy and radiotherapy. However, due to toxicity and resistance to chemoradiotherapy, these treatments can be ineffective. Anxiety and depression are highly prevalent in patients with glioma, adversely affecting disease prognosis and posing societal concerns. Ferroptosis is a type of non-apoptotic, iron-dependent cell death characterized by the accumulation of lethal reactive oxygen species produced by iron metabolism, and it serves a key role in numerous diseases. Regulation of iron phagocytosis may serve as a therapeutic strategy for the development of novel glioma treatments. The present review discusses the mechanisms underlying the occurrence and regulation of ferroptosis, its role in the genesis and evolution of gliomas, and its association with glioma-related anxiety and depression. By exploring potential targets for glioma treatment, the present review provides a theoretical basis for the development of novel therapeutic strategies against glioma.
Collapse
Affiliation(s)
- Yujie Bo
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhao Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenhao Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ming Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
4
|
Li MK, Xing C, Ma LQ. Integrative bioinformatics analysis to screen key genes and signalling pathways related to ferroptosis in obesity. Adipocyte 2023; 12:2264442. [PMID: 37878496 PMCID: PMC10601513 DOI: 10.1080/21623945.2023.2264442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
Ferroptosis is closely associated with the development of disease in the body. However, there are few studies on ferroptosis-related genes (FRGs) in obesity. Therefore, key genes and signalling pathways related to ferroptosis in obesity were screened. Briefly, the RNA sequencing data of obesity and the non-obesity human samples and 259 FRGs were downloaded from GEO database and FerrDb database, respectively. The obesity-related module genes were firstly screened by weighted gene co-expression network analysis (WGCNA) and crossed with differentially expressed genes (DEGs) of obesity/normal samples and FRGs to obtain obesity-ferroptosis related (OFR) DEGs. Then, key genes were screened by PPI network. Next, the correlation of key genes and differential immune cells between obesity and normal samples were further explored by immune infiltration analysis. Finally, microRNA (miRNA)-messenger RNA (mRNA), transcription factor (TF)-mRNA networks and drug-gene interaction networks were constructed. As a result, 17 OFR DEGs were obtained, which mainly participated in processes such as lipid metabolism or adipocyte differentiation. The 4 key genes, STAT3, IL-6, PTGS2, and VEGFA, constituted the network. M2 macrophages, T cells CD8, mast cells activated, and T cells CD4 memory resting had significant differences between obesity and normal samples. Moreover, 51 miRNAs and 164 drugs were predicted for 4 key genes. All in all, this study has screened 4 FRGs, including IL-6, VEGFA, STAT3, and PTGS2, in obesity patients.
Collapse
Affiliation(s)
- Ming-Ke Li
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chang Xing
- Pediatric Hematology and Digestive Department, Qu Jing Maternal and Child Health-care Hospital, Qujing, China
| | - Lan-Qing Ma
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Zhirong Z, Li H, Yi L, Lichen Z, Ruiwu D. Ferroptosis in pancreatic diseases: potential opportunities and challenges that require attention. Hum Cell 2023:10.1007/s13577-023-00894-7. [PMID: 36929283 DOI: 10.1007/s13577-023-00894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The pancreas is an abdominal organ with both endocrine and exocrine functions, and patients with pancreatic diseases suffer tremendously. The regulated cell death of various cells in the pancreas is thought to play a key role in disease development. As one of the newly discovered regulated cell death modalities, ferroptosis has the potential for therapeutic applications in the study of multiple diseases. Ferroptosis has been observed in several pancreatic diseases, but its role in pancreatic diseases has not been systematically elucidated or reviewed. Understanding the occurrence of ferroptosis in various pancreatic diseases after damage to the different cell types is crucial in determining disease progression, evaluating targeted therapies, and predicting disease prognosis. Herein, we summarize the research progress associated with ferroptosis in four common pancreatic diseases, namely acute pancreatitis, chronic pancreatitis, pancreatic ductal adenocarcinoma, and diabetes mellitus. Furthermore, the elucidation of ferroptosis in rare pancreatic diseases may provide sociological benefits in the future.
Collapse
Affiliation(s)
- Zhao Zhirong
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Han Li
- Ultrasound Medical Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liu Yi
- School of Medicine, Jianghan University, Wuhan, 430056, Hubei, China
| | - Zhou Lichen
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China.,Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dai Ruiwu
- General Surgery Center, General Hospital of Western Theater Command, No. 270, Rongdu Rd, Jinniu District, Chengdu, 610083, Sichuan, China. .,College of Medicine, Southwest Jiaotong University, Chengdu, China. .,Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Iron Metabolism and Ferroptosis in Peripheral Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5918218. [PMID: 36506935 PMCID: PMC9733998 DOI: 10.1155/2022/5918218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Peripheral nerve injury (PNI) is a major clinical problem that may lead to different levels of sensory and motor dysfunction including paralysis. Due to the high disability rate and unsatisfactory prognosis, the exploration and revealment of the mechanisms involved in the PNI are urgently required. Ferroptosis, a recently identified novel form of cell death, is an iron-dependent process. It is a unique modality of cell death, closely associated with iron concentrations, generation of reactive oxygen species, and accumulation of the lipid reactive oxygen species. These processes are regulated by multiple cellular metabolic pathways, including iron overloading, lipid peroxidation, and the glutathione/glutathione peroxidase 4 pathway. Furthermore, ferroptosis is accompanied by morphological changes in the mitochondria, such as increased membrane density and shrunken mitochondria; this association between ferroptosis and mitochondrial damage has been detected in various diseases, including spinal cord injury and PNI. The inhibition of ferroptosis can promote the repair of damaged peripheral nerves, reduce mitochondrial damage, and promote the recovery of neurological function. In this review, we intend to discuss the detailed mechanisms of ferroptosis and summarize the current researches on ferroptosis with respect to nerve injury. This review also aims at providing new insights on targeting ferroptosis for PNI treatment.
Collapse
|
7
|
Zhang S, Sun Z, Jiang X, Lu Z, Ding L, Li C, Tian X, Wang Q. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system. Front Immunol 2022; 13:1049936. [PMID: 36479119 PMCID: PMC9720262 DOI: 10.3389/fimmu.2022.1049936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Ferroptosis requires not only the accumulation of iron ions, but also changes in many ferroptosis-related regulators, including a decrease in GPX4 and inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1. Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied by iron buildup, decreased GSH, and increased ROS. On the neurological side, the pro-inflammatory factor released by AT may have first caused ferroptosis in the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders of the autonomic nervous system. On the immune side, obesity may cause M2 macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may also trigger the ferroptosis of B1 cells. In addition, some studies have also found the role of GPX4 in neutrophil autophagy, which is also worth pondering whether there is a connection with ferroptosis. In conclusion, this review summarizes the associations between neuroimmune regulation associated with obesity and ferroptosis, and on the basis of this, highlights their potential molecular mechanisms, proposing that ferroptosis in one or more cells in a multicellular tissue changes the fate of that tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuewen Tian
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| | - Qinglu Wang
- *Correspondence: Xuewen Tian, ; Qinglu Wang,
| |
Collapse
|
8
|
Teng T, Kong CY, Huang R, Ma ZG, Hu C, Zhang X, Hu M, Tang QZ. Mapping current research and identifying hotspots of ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1046377. [PMID: 36407433 PMCID: PMC9672080 DOI: 10.3389/fcvm.2022.1046377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE Ferroptosis is a unique cell death depended on iron metabolism disorder which is different from previous apoptosis-regulated cell death. Early studies have proposed that ferroptosis is closely associated with multiple cardiovascular diseases (CVDs). However, the relationship of ferroptosis and CVDs has not been summarized by using bibliometric analysis. We intended to illustrate the development of ferroptosis in CVDs over the past years and provide relevant valuable information. MATERIALS AND METHODS The authoritative database of Web of Science Core Collection was collected for retrieving ferroptosis studies in CVDs. In this work, statistical and visualization analysis were conducted using VOSviewer and Citespace. RESULTS A total of 263 studies were included in the final study. From the perspective of the overall literature, the study maintains an increased trend year by year and most manuscripts belonged to original article. China was the most productive country with the utmost scientific research output, as well as the institutions and authors, followed by Germany and the United States of America (USA). Jun Peng from China contributes to the most publications. Collaborative efforts between institutes and authors were limited and there was little widespread cooperation. In addition, burst keywords analysis discovered that ischemia-reperfusion (I/R) injury, heart failure (HF), and atherosclerosis were the top three research directions of ferroptosis in CVDs. The burst investigation and timeline views also indicated that endothelial injury and gut microbiota may also serve as new research topics in the future. CONCLUSION This study provided comprehensive and specific information about the most influential articles on ferroptosis in CVDs. The relationship between ferroptosis and CVDs had attracted the scholar's concerns especially in China. Cooperations and communications between countries and institutions should be emphasized and future directions can be concentrated on endothelial disorder and gut microbiota.
Collapse
Affiliation(s)
- Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
9
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|