1
|
Yang H, Zhang Y, Tan Z, Liu Z, Yan Y, Li Q, Saw PE, Liufu N, Ji F. Nucleus-targeted Silencer nanoplatform regulating ZEB1-AS1 in head and neck squamous cell carcinoma therapy. DISCOVER NANO 2024; 19:192. [PMID: 39579302 PMCID: PMC11585530 DOI: 10.1186/s11671-024-04148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024]
Abstract
Long noncoding RNAs have emerged as key players in the progression of head and neck squamous cell carcinoma (HNSC). Among them, ZEB1-AS1 was identified as an upregulated candidate in HNSC through comprehensive analysis of RNA-sequencing datasets. Here, elevated ZEB1-AS1 expression was correlated with poor prognosis in HNSC patients. Further investigations demonstrated that downregulation of ZEB1-AS1 induced epithelial-mesenchymal transition and increased sensitivity to cisplatin in Cal27 cells, while its upregulation reversed these effects, underscoring its pivotal role in tumor metastasis and cisplatin resistance in Cal27 cells. Mechanistically, ZEB1-AS1, located in cytoplasm and nucleus, directly regulated the expression of ZEB1, thereby influencing the expression of μ opioid receptor (MOR) and implicating in cancer progression. To advance clinical translation, we employed a nucleus-targeting nanoparticle platform for efficient delivery of a mixture of antisense oligonucleotides and siRNA (Silencer), effectively manipulating ZEB1-AS1 expression in vitro and in vivo. Besides, a predictive model for HNSC patients was developed by analyzing the expression levels of ZEB1-AS1, ZEB1, and MOR in the HNSC datasets. Our study underscored the critical role of ZEB1-AS1 in HNSC and its potential as a therapeutic target. By elucidating its functional mechanisms and utilizing a nucleus-targeting nanoparticle platform for efficient delivery, we proved the potential of ZEB1-AS1-targeted therapies in HNSC.
Collapse
Affiliation(s)
- Haojie Yang
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yangfan Zhang
- Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicong Tan
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zihao Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Beijing University Cancer Hospital Yunnan Hospital, Kunming, China
| | - Yingzhe Yan
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China.
| | - Ning Liufu
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Fengtao Ji
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Fernandez-De-Los-Reyes I, Gomez-Dorronsoro M, Monreal-Santesteban I, Fernandez-Fernandez A, Fraga M, Azcue P, Alonso L, Fernandez-Marlasca B, Suarez J, Cordoba-Iturriagagoitia A, Guerrero-Setas D. ZEB1 hypermethylation is associated with better prognosis in patients with colon cancer. Clin Epigenetics 2023; 15:193. [PMID: 38093305 PMCID: PMC10720242 DOI: 10.1186/s13148-023-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a heterogeneous disease that is categorized into four Consensus Molecular Subtypes (CMS) according to gene expression. Patients with loco-regional CC (stages II/III) lack prognostic factors, making it essential to analyze new molecular markers that can delineate more aggressive tumors. Aberrant methylation of genes that are essential in crucial mechanisms such as epithelial mesenchymal transition (EMT) contributes to tumor progression in CC. We evaluate the presence of hyper- and hypomethylation in subrogate IHC markers used for CMS classification (CDX2, FRMD6, HTR2B, ZEB1) of 144 stage II/III patients and CC cell lines by pyrosequencing. ZEB1 expression was also studied in control and shRNA-silenced CC cell lines and in paired normal tissue/tumors by quantitative PCR. The pattern of ZEB1 staining was also analyzed in methylated/unmethylated tumors by immunohistochemistry. RESULTS We describe for the first time the hypermethylation of ZEB1 gene and the hypomethylation of the FRMD6 gene in 32.6% and 50.9% of tumors, respectively. Additionally, we confirm the ZEB1 re-expression by epigenetic drugs in methylated cell lines. ZEB1 hypermethylation was more frequent in CMS1 patients and, more importantly, was a good prognostic factor related to disease-free survival (p = 0.015) and overall survival (p = 0.006) in our patient series, independently of other significant clinical parameters such as patient age, stage, lymph node involvement, and blood vessel and perineural invasion. CONCLUSIONS Aberrant methylation is present in the subrogate genes used for CMS classification. Our results are the first evidence that ZEB1 is hypermethylated in CC and that this alteration is an independent factor of good prognosis.
Collapse
Affiliation(s)
- Irene Fernandez-De-Los-Reyes
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Marisa Gomez-Dorronsoro
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Oncogenetic and Hereditary Cancer Group, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Agustín Fernandez-Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Mario Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Pablo Azcue
- Department of Health Science, Public University of Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Laura Alonso
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | | | - Javier Suarez
- Department of Surgery, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Alicia Cordoba-Iturriagagoitia
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
4
|
Ghafouri-Fard S, Askari A, Behzad Moghadam K, Hussen BM, Taheri M, Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023; 245:154486. [PMID: 37120907 DOI: 10.1016/j.prp.2023.154486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
ZEB1 Antisense RNA 1 (ZEB1-AS1) is a type of RNA characterized as long non-coding RNA (lncRNA). This lncRNA has important regulatory roles on its related gene, Zinc Finger E-Box Binding Homeobox 1 (ZEB1). In addition, role of ZEB1-AS1 has been approved in diverse malignancies such as colorectal cancer, breast cancer, glioma, hepatocellular carcinoma and gastric cancer. ZEB1-AS1 serves as a sponge for a number of microRNAs, namely miR-577, miR-335-5p, miR-101, miR-505-3p, miR-455-3p, miR-205, miR-23a, miR-365a-3p, miR-302b, miR-299-3p, miR-133a-3p, miR-200a, miR-200c, miR-342-3p, miR-214, miR-149-3p and miR-1224-5p. In addition to malignant conditions, ZEB1-AS1 has functional role in non-malignant conditions like diabetic nephropathy, diabetic lung, arthrosclerosis, Chlamydia trachomatis infection, pulmonary fibrosis and ischemic stroke. This review outlines different molecular mechanisms of ZEB1-AS1 in a variety of disorders and highlights its importance in their pathogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institue of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang P, Zhang T, Chen D, Gong L, Sun M. Prognosis and Novel Drug Targets for Key lncRNAs of Epigenetic Modification in Colorectal Cancer. Mediators Inflamm 2023; 2023:6632205. [PMID: 37091904 PMCID: PMC10116225 DOI: 10.1155/2023/6632205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Background Colorectal cancer (CRC) has been the 3rd most commonly malignant tumor of the gastrointestinal tract in the world. 5-Methylcytosine (m5C) and long noncoding RNAs (lncRNAs) have an essential role in predicting the prognosis and immune response for CRC patients. Therefore, we built a m5C-related lncRNA (m5CRlncRNA) model to investigate the prognosis and treatment methods for CRC patients. Methods Firstly, we secured the transcriptome and clinical data for CRC from The Cancer Genome Atlas (TCGA). Then, m5CRlncRNAs were recognized by coexpression analysis. Then, univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were utilized to build m5C-related prognostic characteristics. Besides, Kaplan-Meier analysis, ROC, PCA, C-index, enrichment analysis, and nomogram were performed to investigate the model. Additionally, immunotherapy responses and antitumor medicines were explored for CRC patients. Results A total of 8 m5C-related lncRNAs (AC093157.1, LINC00513, AC025171.4, AC090948.2, ZEB1-AS1, AC109449.1, AC009041.3, and LINC02516) were adopted to construct a risk model to investigate survival and prognosis for CRC patients. CRC samples were separated into low- and high-risk groups, with the latter having a worse prognosis. The m5C-related lncRNA model helps us to better distinguish immunotherapy responses and IC50 of antitumor medicines in different groups of CRC patients. Conclusion The research may give new perspectives on tailored therapy approaches as well as novel theories for forecasting the prognosis of CRC patients.
Collapse
Affiliation(s)
- Peng Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tingting Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Denggang Chen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Zhu J, Kuang J, Yang Y, Zhang L, Leng B, She R, Zou L. A Prognostic Model Based on NSUN3 Was Established to Evaluate the Prognosis and Response to Immunotherapy in Liver Hepatocellular Carcinoma. Mediators Inflamm 2023; 2023:6645476. [PMID: 37114236 PMCID: PMC10129436 DOI: 10.1155/2023/6645476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
It is difficult for traditional therapies to further improve the prognosis of hepatocellular carcinoma (LIHC), and immunotherapy is considered to be a promising approach to overcome this dilemma. However, only a minority of patients benefit from immunotherapy, which greatly limits its application. Therefore, it is particularly urgent to elucidate the specific regulatory mechanism of tumor immunity so as to provide a new direction for immunotherapy. NOP2/Sun RNA methyltransferase 3 (NSUN3) is a protein with RNA binding and methyltransferase activity, which has been shown to be involved in the occurrence and development of a variety of tumors. At present, the relationship between NSUN3 and immune implication in LIHC has not been reported. In this study, we first revealed that NSUN3 expression is upregulated in LIHC and that patients with high NSUN3 expression have a poor prognosis through multiple databases. Pathway enrichment analysis demonstrated that NSUN3 may be participated in cell adhesion and cell matrix remodeling. Next, we obtained a set of genes coexpressed with NSUN3 (NCGs). Further LASSO regression was performed based on NCGs, and a risk score model was constructed, which proved to have good predictive power. In addition, Cox regression analysis revealed that the risk score of NCGs model was an independent risk factor for LIHC patients. Moreover, we established a nomogram based on the NCGs-related model, which was verified to have a good predictive ability for the prognosis of LIHC. Furthermore, we investigated the relationship between NCGs-related model and immune implication. The results implied that our model was closely related to immune score, immune cell infiltration, immunotherapy response, and multiple immune checkpoints. Finally, the pathway enrichment analysis of NCGs-related model showed that the model may be involved in the regulation of various immune pathways. In conclusion, our study revealed a novel role of NSUN3 in LIHC. The NSUN3-based prognostic model may be a promising biomarker for inspecting the prognosis and immunotherapy response of LIHC.
Collapse
Affiliation(s)
- Jianlin Zhu
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Junxi Kuang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
- Department of Emergency, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Yi Yang
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Lei Zhang
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Bo Leng
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Risheng She
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Department of Emergency, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Ling Zou
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| |
Collapse
|