1
|
Haihan D, Changfei Z, Hengli L, Ning T, Lezhen Z, Hui L. The development of day surgery in China and the effectiveness and reflection of day surgery in ophthalmology-specialized hospitals. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2024; 22:47. [PMID: 38802948 PMCID: PMC11131228 DOI: 10.1186/s12962-024-00558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
This survey investigates the development of day surgery in China, and analyzes the national policy support, medical service management model, disease types of day surgery, medical insurance payment methods, and the medical service capacity, efficiency, quality and safety, health economics indicators, and patient satisfaction after the implementation of day surgery in a tertiary eye hospital. After more than 20 years of development, China's day surgery has shown a good development trend. The implementation of day surgery in eye hospitals accounts for more than 70% of elective surgery, and patients, medical institutions, and medical insurance institutions have all achieved good social benefits.
Collapse
Affiliation(s)
- Dong Haihan
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China
| | - Zheng Changfei
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China
| | - Lian Hengli
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China
| | - Tang Ning
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China
| | - Zhuo Lezhen
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China
| | - Lin Hui
- Eye Hospital, Wenzhou Medical University, Wenzhou, 31000, China.
| |
Collapse
|
2
|
Entezari B, Koucheki R, Abbas A, Toor J, Wolfstadt JI, Ravi B, Whyne C, Lex JR. Improving Resource Utilization for Arthroplasty Care by Leveraging Machine Learning and Optimization: A Systematic Review. Arthroplast Today 2023; 20:101116. [PMID: 36938350 PMCID: PMC10014272 DOI: 10.1016/j.artd.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 03/21/2023] Open
Abstract
Background There is a growing demand for total joint arthroplasty (TJA) surgery. The applications of machine learning (ML), mathematical optimization, and computer simulation have the potential to improve efficiency of TJA care delivery through outcome prediction and surgical scheduling optimization, easing the burden on health-care systems. The purpose of this study was to evaluate strategies using advances in analytics and computational modeling that may improve planning and the overall efficiency of TJA care. Methods A systematic review including MEDLINE, Embase, and IEEE Xplore databases was completed from inception to October 3, 2022, for identification of studies generating ML models for TJA length of stay, duration of surgery, and hospital readmission prediction. A scoping review of optimization strategies in elective surgical scheduling was also conducted. Results Twenty studies were included for evaluating ML predictions and 17 in the scoping review of scheduling optimization. Among studies generating linear or logistic control models alongside ML models, only 1 found a control model to outperform its ML counterpart. Furthermore, neural networks performed superior to or at the same level as conventional ML models in all but 1 study. Implementation of mathematical and simulation strategies improved the optimization efficiency when compared to traditional scheduling methods at the operational level. Conclusions High-performing predictive ML-based models have been developed for TJA, as have mathematical strategies for elective surgical scheduling optimization. By leveraging artificial intelligence for outcome prediction and surgical optimization, there exist greater opportunities for improved resource utilization and cost-savings in TJA than when using traditional modeling and scheduling methods.
Collapse
Affiliation(s)
- Bahar Entezari
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Queen’s University School of Medicine, Kingston, Ontario, Canada
- Corresponding author. Mount Sinai Hospital, 15 Arch Street, Kingston, Ontario, Canada K7L 3N6. Tel.: +1 647 866 8729.
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aazad Abbas
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Toor
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jesse I. Wolfstadt
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bheeshma Ravi
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Cari Whyne
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Johnathan R. Lex
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|