1
|
Dong Y, Lou F, Yan L, Luo S, Zhang Y, Liu Y, Lv S, Xu J, Kang N, Luo Z, Liu Y, Pu J, Ji P, Jin X. Salivary microbiota and metabolic phenotype of patients with recurrent aphthous ulcers. Oral Dis 2024; 30:4412-4425. [PMID: 38169073 DOI: 10.1111/odi.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES Recurrent aphthous ulcer (RAU) is a prevalent oral mucosal disease, affecting around 20% of the global population. It can greatly impair the quality of life for affected individuals. However, the exact etiology of RAU remains unknown. SUBJECTS AND METHODS 16S rRNA sequencing (16S rRNA-seq) and non-targeted liquid chromatography-mass spectrometry (LC-MS) were employed to investigate the salivary microbiota and metabolic phenotype between RAU patients (N = 61) and healthy controls (HCs) (N = 105). RESULTS Findings from 16S rRNA -seq indicated reduced oral microbial diversity in RAU patients compared to HCs, but increased interactions. Clinical variables did not show any significant association with the overall diversity of oral microbiota in RAU patients. However, significant correlations were observed between specific microorganisms and clinical variables. LC-MS results revealed dysregulation of amino acid, lipid, nucleotide, and caffeine metabolism in RAU patients. Furthermore, correlation analysis of 16S rRNA-seq and LC-MS data revealed a significant association between salivary microbiota and metabolites in RAU patients. CONCLUSIONS Our study revealed notable differences in salivary microbiota and metabolic profiles between RAU patients and HCs, indicating a strong link between oral microbiota dysbiosis, metabolic disturbances, and the onset and progression of RAU.
Collapse
Affiliation(s)
- Yunmei Dong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Fangzhi Lou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Yan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shihong Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yingying Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shiping Lv
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jingyi Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ning Kang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Zhuoyan Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Zhang K, Chen H, Hao Y, Li W, Li Y, Zhang W, Chen Y. Armillariella tabescens polysaccharide treated rats with oral ulcers through modulation of oral microbiota and activation of the Nrf2/HO-1 pathway. Int J Biol Macromol 2024; 261:129697. [PMID: 38272409 DOI: 10.1016/j.ijbiomac.2024.129697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
We identified Armillariella tabescens polysaccharide (PAT-W), a compound isolated from a Chinese medicinal mushroom, as a potential novel oral ulcer (OU) drug. In treating OU rats with PAT-W, especially in the high-dose group, oral mucous tissue TNF-α, IL-1β, and IL-6 levels were markedly reduced, and pathological morphology and oxidative stress were effectively improved. Western blot analysis showed that the PAT-W channel ameliorated OU mucous tissue damage, which depends on the activation of the Nrf2/HO-1 antioxidant signaling pathway. Furthermore, high-throughput sequencing results showed that PAT-W regulated the maladjustment of the oral microbiota caused by OU. Therefore, based on the new viewpoint of activating the Nrf2/HO-1 pathway and regulating oral microbiota, PAT-W is expected to become a new natural drug for treating oral ulcers and improving patients' quality of life.
Collapse
Affiliation(s)
- Kunfeng Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yunbo Hao
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wensen Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenna Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
3
|
Zhou S, He TC, Zhang Y, Zhang H. Comparison of the main pathogenic microorganisms of various common oral diseases in children and adults. PEDIATRIC DISCOVERY 2023; 1:e35. [PMID: 38371743 PMCID: PMC10874635 DOI: 10.1002/pdi3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024]
Abstract
The microorganisms in the human body gradually change and maintain a dynamic balance with the development of physiology and pathology. Oral microbiota is one of the most important microbiota in human body. It is not only closely related to the occurrence and development of oral diseases, but also plays an important role in the overall health. In childhood, the population of oral microorganisms is relatively small, but with the growth of age and tooth development, the species and quantity of oral microorganisms are gradually increasing. Different oral diseases also have their corresponding main microorganisms, and these dominant microorganisms change at different stages of the disease. In this review, we summarized and compared the main pathogenic microorganisms of several common oral diseases in children and adults. In addition, the possible association and difference between adults and children of the main pathogenic microorganisms in different stages of the same or different diseases are also discussed in order to provide research data for the development and diagnosis of common oral diseases in children and adults.
Collapse
Affiliation(s)
- Siqi Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Xiao X, Shi Z, Song Y, Li K, Liu S, Song Z. Oral microbiota in active and passive states of recurrent aphthous stomatitis: An analysis of case-control studies. Arch Oral Biol 2023; 153:105751. [PMID: 37379635 DOI: 10.1016/j.archoralbio.2023.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/21/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE This study was presented to reveal the most distinct microbial prevalence in recurrent aphthous stomatitis (RAS) lesions compared to healthy controls. DESIGN The case-control studies were selected in electronic databases until Nov 2022 with key search terms, and the eligible publications were screened and analyzed by independent authors. RESULTS A total of 14 studies were identified, which included 531 cases of active states of RAS (AS-RAS), 92 cases of passive states of RAS (PS-RAS) and 372 healthy controls. The most sample pattern was the mucosa swab performed in 8 of 14 studies, biopsies in 3 studies, followed by micro-brush, and saliva. A variety of bacteria in higher or lower abundance were observed in RAS lesions. CONCLUSIONS The etiopathogenesis of RAS may not be ascribed to a single pathogen. A possible explanation is that microbial interactions modify immune response or destroy the epithelial integrity, thus contributing to the development of the condition.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhaocheng Shi
- Department of Oral Mucosa, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yuhan Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Kaiyi Li
- Department of Oral Mucosa, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|