1
|
Ma Z, Liu X, Zhang X, Li S, An J, Luo Z. Research progress on long non‑coding RNAs in non‑infectious spinal diseases (Review). Mol Med Rep 2024; 30:164. [PMID: 38994759 PMCID: PMC11267249 DOI: 10.3892/mmr.2024.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non‑infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non‑coding RNA (lncRNA), a form of non‑coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Tao X, Xue F, Xu J, Wang W. Platelet-rich plasma-derived extracellular vesicles inhibit NF-κB/NLRP3 pathway-mediated pyroptosis in intervertebral disc degeneration via the MALAT1/microRNA-217/SIRT1 axis. Cell Signal 2024; 117:111106. [PMID: 38373669 DOI: 10.1016/j.cellsig.2024.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a main contributor to lower back pain, and compression stress-induced apoptosis of nucleus pulposus (NP) cells and extracellular matrix (ECM) degradation has been implicated in the IDD progression. The functions of platelet-rich plasma (PRP)-derived extracellular vesicles (PRP-EVs) in regulating these biological processes remain unclear in IDD. Here, we aimed to investigate the key role of long noncoding RNA (lncRNA) MALAT1 incorporated in PRP-EVs in IDD. METHODS Tert-butyl hydroperoxide (TBHP)-induced damage in NP cells was treated with PRP-EVs extracted from healthy volunteers, followed by MTT, EdU, TUNEL, and Western blot assays. IDD mice were also treated with PRP-EVs. Histomorphological and pathological changes were evaluated. The pyroptosis of cells and the degradation of ECM were detected by ELISA and immunohistochemistry. We screened the differentially expressed lncRNAs in NP cells after PRP-EVs treatment by microarray analysis. The downstream targets of MALAT1 in NP cells were predicted and validated by rescue experiments. FINDINGS TBHP induction reduced cell proliferation and exacerbated pyroptosis and ECM degradation, and PRP-EVs inhibited TBHP-induced cell damage. PRP-EVs-treated mice with IDD had reduced Thompson scores, increased NP tissue content, and restored ECM. PRP-EVs upregulated MALAT1 expression in vivo and in vitro, whereas MALAT1 downregulation exacerbated NP cell pyroptosis and ECM degradation. MALAT1 upregulated SIRT1 expression by downregulating microRNA (miR)-217 in NP cells. SIRT1 blocked the NF-κB/NLRP3 pathway-mediated pyroptosis, thereby alleviating IDD. INTERPRETATION PRP-EVs deliver MALAT1 to regulate miR-217/SIRT1, thereby controlling NP cell pyroptosis in IDD.
Collapse
Affiliation(s)
- Xueqiang Tao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China; Department of Orthopaedics, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Fen Xue
- Department of Obstetrics and Gynecology, The Fourth Hospital of BaoTou, Baotou 014030, Inner Mongolia, China
| | - Jiayuan Xu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China
| | - Wenbo Wang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang, China.
| |
Collapse
|
3
|
Lu G, Zhang C, Li K, Gao K, Fu M, Lyu C, Quan Z. Sinomenine Ameliorates IL-1β-Induced Intervertebral Disc Degeneration in Rats Through Suppressing Inflammation and Oxidative Stress via Keap1/Nrf2/NF-κB Signaling Pathways. J Inflamm Res 2023; 16:4777-4791. [PMID: 37881650 PMCID: PMC10596063 DOI: 10.2147/jir.s430423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose To investigate the molecular mechanism underlying the inhibitory effect of sinomenine (SN) on interleukin-1β (IL-1β)-induced apoptosis in nucleus pulposus cells (NPCs), and to evaluate the potential role of SN in preventing intervertebral disk degeneration (IDD). Methods The Rat NPCs were cultured in vitro and identified using Hematoxylin-Eosin (HE) staining, toluidine blue staining, and immunofluorescence analysis. NPCs were pretreated with or without SN, then induced with IL-1β to assess cell viability, ROS levels, apoptotic rates, and wound healing ability. Relevant protein expression was detected using Elisa, qPCR and Western Blot techniques. NPCs were pretreated with SN, either alone or in combination with Nrf2-IN-1 or SC, before being induced to undergo apoptosis by IL-1β. Apoptosis was detected using Hoechst staining, while qPCR and Western Blot techniques assessed protein expression. Rat caudal intervertebral discs were induced with IDD, with or without SN injection, and then co-injected with IL-1β. The levels of IDD were evaluated using HE staining and modified saffron-O-fix green cartilage staining. Relevant protein expression was detected using Elisa, qPCR, and Western Blot techniques. Results IL-1β significantly reduced NPC activity, induced ROS accumulation and apoptosis, decreased cell healing rate, promoted the expression and secretion of inflammatory factors, and inhibited extracellular matrix synthesis. However, pretreatment with SN effectively reversed these effects. Inhibition of the Keap1/Nrf2 signaling pathway or activation of the NF-κB signaling pathway significantly attenuated the cytoprotective effects of SN and increased apoptosis. Acupuncture combined with IL-1β injection markedly induced intervertebral disc degeneration in rat caudal spine, upregulated inflammatory factors expression and secretion, and downregulated extracellular matrix synthesis. SN intervention notably enhanced antioxidant enzyme expression and reversed these outcomes. Conclusion SN can prevent IL-1β-induced apoptosis of NPCs and ameliorate IDD by activating the Keap1/Nrf2 pathway and inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Gongbiao Lu
- Department of Spine Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Kang Li
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Kai Gao
- Department of Orthopaedics, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Maoqing Fu
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Chaoliang Lyu
- Department of Spine Surgery, Jining No.1 People’s Hospital, Jining, 272011, People’s Republic of China
| | - Zhengxue Quan
- Department of Spine Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
4
|
Pan J, Liu Z, Shen B, Xu J, Dai G, Xu W, Wang J, Li L, Cheng L. tsRNA-04002 alleviates intervertebral disk degeneration by targeting PRKCA to inhibit apoptosis of nucleus pulposus cells. J Orthop Surg Res 2023; 18:413. [PMID: 37287061 PMCID: PMC10249188 DOI: 10.1186/s13018-023-03878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Intervertebral disk degeneration (IDD) is a degenerative disease that underlies various musculoskeletal and spinal disorders and is positively correlated with age. tRNA-derived small RNAs (tsRNA), as a new small noncoding RNAs, its function in IDD is unclear. Herein, our goal was to find the key tsRNA that affects IDD independently of age and explore the underlying mechanisms. METHODS Small RNA sequencing was performed in nucleus pulposus (NP) tissues of traumatic lumbar fracture individuals, young IDD (IDDY) patients, and old IDD (IDDO) patients. The biological functions of tsRNA-04002 in NP cells (NPCs) were investigated by qRT-PCR, western blot, and flow cytometry analysis. The molecular mechanism of tsRNA-04002 was demonstrated by luciferase assays and rescue experiments. Furthermore, the therapeutic effects of tsRNA-04002 on IDD rat model were used and evaluated in vivo. RESULTS Compared with fresh traumatic lumbar fracture patients, a total of 695 disordered tsRNAs is obtained (398 down-regulated tsRNAs and 297 up-regulated tsRNAs). These disordered tsRNAs were mainly involved in Wnt signaling pathway and MAPK signaling pathway. tsRNA-04002 was an age-independent key target in IDD, which was both lower expressed in IDDY and IDDO groups than control group. Overexpression of tsRNA-04002 restrained inflammatory cytokines IL-1β and TNF-α expression, increased the COL2A1, and inhibited the NPCs apoptosis. Furthermore, we determined that PRKCA was the target gene of tsRNA-04002 and was negatively regulated by tsRNA-04002. The rescue experiment results suggested that the high expression of PRKCA reversed the inhibitory effect of tsRNA-04002 mimics on NPCs inflammation and apoptosis, and promotive effect of COL2A1. Moreover, tsRNA-04002 treatment dramatically ameliorated the IDD process in the puncture-induced rat model, together with the blockade of PRKCA in vivo. CONCLUSION Collectively, our results substantiated that tsRNA-04002 could alleviate IDD by targeting PRKCA to inhibit apoptosis of NPCs. tsRNA-04002 may be a novel therapeutic target of IDD progression.
Collapse
Affiliation(s)
- Jie Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhonghan Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bin Shen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jin Xu
- Department of Anesthesiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Gonghua Dai
- Department of Medical Imaging, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wen Xu
- Department of Medical Imaging, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianjie Wang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Putuo Distrcit, Shanghai, 200092, China
| | - Lijun Li
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Putuo Distrcit, Shanghai, 200092, China.
| |
Collapse
|
5
|
miR-4478 Accelerates Nucleus Pulposus Cells Apoptosis Induced by Oxidative Stress by Targeting MTH1. Spine (Phila Pa 1976) 2023; 48:E54-E69. [PMID: 36130054 PMCID: PMC9897280 DOI: 10.1097/brs.0000000000004486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Low back pain is the leading cause of disability in the elderly population and is strongly associated with intervertebral disk degeneration (IVDD). However, the precise molecular mechanisms regulating IVDD remain elusive. This study aimed to investigate the role of differentially expressed miRNAs in the pathogenesis of IVDD. MATERIALS AND METHODS We analyzed miRNA microarray datasets to identify differentially expressed miRNAs in IVDD progression and conducted quantitative real-time polymerase chain reaction and fluorescence in situ hybridization analysis to further confirm the differential expression of miR-4478 in nucleus pulposus (NP) tissues of patients diagnosed with IVDD. Using public databases of miRNA-mRNA interactions, we predicted the target genes of miR-4478, and subsequent flow cytometry and western blot analyses demonstrated the effect of MTH1 in H 2 O 2 -induced nucleus pulposus cells (NPCs) apoptosis. Finally, miR-4478 inhibitor was injected into NP tissues of the IVDD mouse model to explore the effect of miR-4478 in vivo. RESULTS miR-4478 was upregulated in NP tissues from IVDD patients. Silencing of miR-4478 inhibits H 2 O 2 -induced NPCs apoptosis. MTH1 was identified as a target gene for miR-4478, and miR-4478 regulates H 2 O 2 -induced NPCs apoptosis by modulating MTH1. In addition, downregulation of miR-4478 alleviated IVDD in a mouse model. CONCLUSIONS In summary, our study provides evidence that miR-4478 may aggravate IVDD through its target gene MTH1 by accelerating oxidative stress in NPCs and demonstrates that miR-4478 has therapeutic potential in IVDD treatment.
Collapse
|
6
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
Mesenchymal Stem Cells May Alleviate the Intervertebral Disc Degeneration by Reducing the Oxidative Stress in Nucleus Pulposus Cells. Stem Cells Int 2022; 2022:6082377. [PMID: 36238530 PMCID: PMC9551678 DOI: 10.1155/2022/6082377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a promising therapeutic modality for intervertebral disc degeneration (IDD). Oxidative stress is a vital contributor to the IDD; however, the definite role of oxidative stress in stem cell therapy for IDD remains obscure. The aim of this study was to determine the vital role of oxidative stress-related differentially expressed genes (OSRDEGs) in degenerative NPCs cocultured with mesenchymal stem cells (MSCs). Methods A series of bioinformatic methods were used to calculate the oxidative stress score and autophagy score, identify the OSRDEGs, conduct the function enrichment analysis and protein-protein interaction (PPI) analysis, build the relevant competing endogenous RNA (ceRNA) regulatory networks, and explore the potential association between oxidative stress and autophagy in degenerative NPCs cocultured with MSCs. Results There was a significantly different oxidative stress score between NPC/MSC samples and NPC samples (p < 0.05). Forty-one OSRDEGs were selected for the function enrichment and PPI analyses. Ten hub OSRDEGs were obtained according to the PPI score, including JUN, CAT, PTGS2, TLR4, FOS, APOE, EDN1, TXNRD1, LRRK2, and KLF2. The ceRNA regulatory network, which contained 17 DElncRNAs, 240 miRNAs, and 10 hub OSRDEGs, was constructed. Moreover, a significant relationship between the oxidative stress score and autophagy score was observed (p < 0.05), and 125 significantly related gene pairs were obtained (|r| > 0.90, p < 0.05). Conclusion Stem cell therapy might repair the degenerative IVD via reducing the oxidative stress through the ceRNA regulatory work and restoration of autophagy in degenerative NPCs. This research could provide new insights into the mechanism research of stem cell therapy for IDD and potential therapeutic targets in the IDD treatment.
Collapse
|
8
|
Jiang C, Chen Z, Wang X, Zhang Y, Guo X, Xu Z, Yang H, Hao D. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1081185. [PMID: 36568075 PMCID: PMC9772433 DOI: 10.3389/fendo.2022.1081185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Low back pain (LBP) is one of the most common musculoskeletal symptoms and severely affects patient quality of life. The majority of people may suffer from LBP during their life-span, which leading to huge economic burdens to family and society. According to the series of the previous studies, intervertebral disc degeneration (IDD) is considered as the major contributor resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), can regulate diverse cellular processes, which have been found to play pivotal roles in the development of IDD. However, the potential mechanisms of action for ncRNAs in the processes of IDD are still completely unrevealed. Therefore, it is challenging to consider ncRNAs to be used as the potential therapeutic targets for IDD. In this paper, we reviewed the current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly participate in the process of IDD through regulating apoptosis of nucleus pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD development, which is similar to the network and can modulate each other; iii). ncRNAs have been attempted to combat the degenerative processes and may be promising as an efficient bio-therapeutic strategy in the future. Hence, this review systematically summarizes the principal pathomechanisms of IDD and shed light on the therapeutic potentials of ncRNAs in IDD.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaohui Wang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yongyuan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xinyu Guo
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhengwei Xu
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Hao Yang, ; Dingjun Hao,
| |
Collapse
|