1
|
Lu K, Li C, Men J, Xu B, Chen Y, Yan P, Gai Z, Zhang Q, Zhang L. Traditional Chinese medicine to improve immune imbalance of asthma: focus on the adjustment of gut microbiota. Front Microbiol 2024; 15:1409128. [PMID: 39411430 PMCID: PMC11473343 DOI: 10.3389/fmicb.2024.1409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Asthma, being the prevailing respiratory ailment globally, remains enigmatic in terms of its pathogenesis. In recent times, the advancement of traditional Chinese medicine pertaining to the intestinal microbiota has yielded a plethora of investigations, which have substantiated the potential of traditional Chinese medicine in disease prevention and treatment through modulation of the intestinal microbiota. Both animal models and clinical trials have unequivocally demonstrated the indispensable role of the intestinal microbiota in the pathogenesis of asthma. This article presents a summary of the therapeutic effects of traditional Chinese medicine in the context of regulating gut microbiota and its metabolites, thereby achieving immune regulation and inhibiting airway inflammation associated with asthma. It elucidates the mechanism by which traditional Chinese medicine modulates the gut microbiota to enhance asthma management, offering a scientific foundation for the utilization of traditional Chinese medicine in the treatment of asthma.
Collapse
Affiliation(s)
- Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Zhang Y, Huang F, Wu Y, Jiao L, Wang Y, Ding T. Protective effect of rubber seed oil on human endothelial cells. J Mol Histol 2024; 55:589-598. [PMID: 38890233 PMCID: PMC11306359 DOI: 10.1007/s10735-024-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study was conducted to characterize the antioxidant and anti-inflammatory properties of Rubber Seed Oil (RSO) against atherosclerosis (AS) through the study of the protective effects and mechanisms on human umbilical vein endothelial cells (HUVECs) injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS HUVECs were treated with RSO, ox-LDL, RSO + ox-LDL, respectively, followed by cell activity testing, levels of IL-1β, IL-6, IL-10, TNF-α, ROS, NO, the mRNA expression of eNOS and protein expression of MCP-1, VCAM-1, eNOS, TLR4, NF-κB p65、p-NF-κB p65. RESULTS Compared with the ox-LDL group, cell viability, NO level and the expression of eNOS mRNA significantly increased. and the levels of pro-inflammatory factors such as IL-1β, IL-6, TNF-α, IL-10, ROS were significantly decreased, which was accompanied by decreases in TLR4 mRNA, TLR4, MCP-1, VCAM-1 protein expression, as well as the ratio of NF-κB p-p65/p65 in the group treated with 250 μg/ml ox-LDL + 50 μg/ml RSO, 250 μg/ml ox-LDL + 100 μg/ml RSO, 250 μg/ml ox-LDL + 150 μg/ml RSO. CONCLUSIONS RSO can reduce the expression of pro-inflammatory mediators, oxidative factors involved in injured vascular endothelial cells, exhibiting anti-inflammatory and antioxidant properties HUVECs exposed to ox-LDL. In addition, it may alleviate endothelial cell damage by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Fuchuan Huang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yiran Wu
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Linmei Jiao
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yun Wang
- Xishuangbanna Huakun Biotechnology Co., Ltd, Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan, China
| | - Tao Ding
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Li RL, Wang LY, Duan HX, Qian D, Zhang Q, He LS, Li XP. Natural flavonoids derived from herbal medicines are potential anti-atherogenic agents by inhibiting oxidative stress in endothelial cells. Front Pharmacol 2023; 14:1141180. [PMID: 36909175 PMCID: PMC10001913 DOI: 10.3389/fphar.2023.1141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
As the common pathological basis of various cardiovascular diseases, the morbidity and mortality of atherosclerosis (AS) have increased in recent years. Unfortunately, there are still many problems in the treatment of AS, and the prevention and treatment of the disease is not ideal. Up to now, the occurrence and development of AS can roughly include endothelial cell dysfunction, vascular smooth muscle cell proliferation, inflammation, foam cell production, and neoangiogenesis. Among them, endothelial dysfunction, as an early event of AS, plays a particularly important role in promoting the development of AS. In addition, oxidative stress occurs throughout the causes of endothelial dysfunction. Some previous studies have shown that flavonoids derived from herbal medicines are typical secondary metabolites. Due to its structural presence of multiple active hydroxyl groups, it is able to exert antioxidant activity in diseases. Therefore, in this review, we will search PubMed, Web of Science, Elesvier, Wliey, Springer for relevant literature, focusing on flavonoids extracted from herbal medicines, and summarizing how they can prevent endothelial dysfunction by inhibiting oxidative stress. Meanwhile, in our study, we found that flavonoid represented by quercetin and naringenin showed superior protective effects both in vivo and in vitro, suggesting the potential of flavonoid compounds in the treatment of AS.
Collapse
Affiliation(s)
- Ruo-Lan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Qian
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Sha He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Ping Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Yuan J, Yan F, Li W, Yuan G. Network pharmacological analysis of Xuefu Zhuyu decoction in the treatment of atherosclerosis. Front Pharmacol 2022; 13:1069704. [PMID: 36532728 PMCID: PMC9755496 DOI: 10.3389/fphar.2022.1069704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 03/04/2024] Open
Abstract
Objective: Using a network pharmacological approach, this study will evaluate the effect of Xuefu Zhuyu Decoction in the treatment of atherosclerosis. Methods: The data were imported into the STRING database to construct a protein-protein interaction network, and the network topology was analysed with the Bisogenet plug-in by Cytoscape 3.7.2. Using the R language Bioconductor platform, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for potential targets of Xuefu Zhuyu Decoction in the treatment of atherosclerosis were performed, and import the results were imported into Cytoscape 3.7.2. To map the results and create a KEGG network diagram, we used Cytoscape 3.7.2 for analysis. Results: A total of 91 chemical components and 1320 disease targets were obtained, including 138 cross-targets. TNF, AKT1 and ALB were identified as important targets, and Gene Ontology functional analysis indicated that biological process was the primary cause of oxidative stress. The primary action of molecular function is binding. KEGG has explored and enriched 149 signalling pathways, including the AGE-RAGE signalling system and the TNF signalling network. According to a study involving molecular docking, quercetin and β-carotene have a strong binding affinity for AKT1 and ALB. Conclusion: The potential of Xuefu Zhuyu Decoction to treat atherosclerosis through multiple components and targets provides a way to further study its mechanism.
Collapse
Affiliation(s)
- Jinxia Yuan
- Department of Cardiology, Shuyang Hospital of Traditional Chinese Medicine, Yangzhou University, Shuyang, Jiangsu, China
| | - Fei Yan
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Li
- Department of Cardiology, Shuyang Hospital of Traditional Chinese Medicine, Yangzhou University, Shuyang, Jiangsu, China
| | - Guoliang Yuan
- Department of Cardiology, Shuyang Hospital of Traditional Chinese Medicine, Yangzhou University, Shuyang, Jiangsu, China
| |
Collapse
|
5
|
Xie B, Zu X, Wang Z, Xu X, Liu G, Liu R. Ginsenoside Rc ameliorated atherosclerosis via regulating gut microbiota and fecal metabolites. Front Pharmacol 2022; 13:990476. [PMID: 36188559 PMCID: PMC9520581 DOI: 10.3389/fphar.2022.990476] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis (AS) and the accompanied cardiovascular diseases (CVDs) were the leading cause of death worldwide. Recently, the association between CVDs, gut microbiota, and metabolites had aroused increasing attention. In the study, we headed our investigation into the underlying mechanism of ginsenoside Rc (GRc), an active ingredient of ginsenosides used for the treatment of CVDs, in apolipoprotein E-deficient (ApoE−/−) mice with high-fat diet (HFD). Seven-week-old male ApoE−/− mice were randomly divided into four groups: the normal control (NC) group, the HFD group, the GRc group (40 mg/kg/d), and the atorvastatin (Ato) group (10 mg/kg/d). Atherosclerotic injury was evaluated by aortic lesions, serum lipid levels, and inflammatory factors. The composition of gut microbiota and fecal metabolite profile were analyzed using 16S rRNA sequence and untargeted metabolomics, respectively. The results showed that GRc significantly alleviated HFD-induced aortic lesions, reduced serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 and IL-1β, and increased high-density lipoprotein cholesterol (HFD-C) level, as well as the alteration of gut microbiota composition, function, and metabolite profile. GRc also reversed HFD change of Bacteroidetes and Firmicutes at the phylum level, Muribaculaceae, Lactobacillus, Ileibacterium, Bifidobacterium, Faecalibaculum, Oscillibacter, Blautia, and Eubacterium_coprostanoligenes_group at the genus level, and 23 key metabolites involved in taurine and hypotaurine metabolism, arginine biosynthesis, ATP-binding cassette (ABC) transporters, primary bile acid biosynthesis, purine metabolism, tricarboxylic acid (TCA) cycle, and glucagon signaling pathways. Additionally, eight differential intestinal floras at the genus level were associated with 23 key differential metabolites involving atherosclerotic injury. In conclusion, our results demonstrated that GRc ameliorated atherosclerotic injury, regulated microbial and metabolomic changes in HFD-induced ApoE−/− mice, and suggested a potential correlation among gut microbiota, metabolites, and atherosclerotic injury regarding the mechanisms of GRc against AS.
Collapse
Affiliation(s)
- Bin Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhicong Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Guoping Liu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Guoping Liu, ; Runhui Liu,
| | - Runhui Liu
- School of Pharmacy, Naval Medical University, Shanghai, China
- *Correspondence: Guoping Liu, ; Runhui Liu,
| |
Collapse
|