1
|
Moe KT, Tan KSW. Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer. Cancers (Basel) 2024; 16:3305. [PMID: 39409925 PMCID: PMC11475040 DOI: 10.3390/cancers16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide, and its two major types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), present a severe global public health problem with an increasing incidence and mortality. Established risk factors include smoking, alcohol consumption, and dietary habits, but recent research has highlighted the substantial role of oral microbiota in EC pathogenesis. This review explores the intricate relationship between the microbiome and esophageal carcinogenesis, focusing on the following eight significant mechanisms: chronic inflammation, microbial dysbiosis, production of carcinogenic metabolites, direct interaction with epithelial cells, epigenetic modifications, interaction with gastroesophageal reflux disease (GERD), metabolic changes, and angiogenesis. Certain harmful bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are specifically implicated in sustaining irritation and tumor progression through pathways including NF-κB and NLRP3 inflammasome. Additionally, the review explores how microbial byproducts, including short-chain fatty acids (SCFAs) and reactive oxygen species (ROS), contribute to DNA harm and disease advancement. Furthermore, the impact of reflux on microbiota composition and its role in esophageal carcinogenesis is evaluated. By combining epidemiological data with mechanistic understanding, this review underscores the potential to target the microbiota-immune system interplay for novel therapeutic and diagnostic strategies to prevent and treat esophageal cancer.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Biomedical Sciences, Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Health Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| |
Collapse
|
2
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Schertel Cassiano L, Jensen AB, Pajaniaye J, Lopez R, Fjaeldstad AW, Nascimento GG. Periodontitis is associated with impaired olfactory function: A clinical study. J Periodontal Res 2024. [PMID: 38888002 DOI: 10.1111/jre.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
AIM To explore the association between periodontitis and olfactory disorders. METHODS Clinical data were collected from 198 individuals between the ages of 18 and 60 years living in Denmark. The exposure was periodontitis, and the outcome was olfactory function (Threshold, Discrimination, Identification - TDI score), both measured clinically. Covariates included sex, age, education level, income, usage of nasal spray, tongue coating, halitosis, xerostomia, smoking, and history of COVID-19. Structural equation modeling was used to estimate the association between periodontitis and olfactory function. Periodontitis was defined using the AAP/EFP classification and dichotomized into "no" (healthy subjects) and "yes" (Stages I, II, and III). Olfactory function was treated as a one-factor latent variable, including the different olfactory scores. In addition, extra models were performed considering each olfactory component as a separate outcome and the TDI Global Score. RESULTS The results showed that periodontitis was associated with a lower olfactory function [standardized coefficient (SC) -0.264, 95% CI -0.401, -0.118]. Additionally, periodontitis was also associated with a lower olfactory Threshold (odorant concentration required for detection) (SC -0.207, 95% CI -0.325, -0.089), Discrimination (ability to discriminate between odorants) (SC -0.149, 95% CI -0.270, -0.027), Identification (ability to identify odorants) scores (SC -0.161, 95% CI -0.277, -0.045), and TDI Global Score (SC -0.234, 95% CI -0.370, -0.099). CONCLUSIONS This study suggests that periodontitis is associated with olfactory impairment.
Collapse
Affiliation(s)
- Luisa Schertel Cassiano
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Anne Birkeholm Jensen
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Julie Pajaniaye
- Section for Oral Ecology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Rodrigo Lopez
- Center for Translational Oral Research - Periodontology, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Gustavo G Nascimento
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore City, Singapore
- National Dental Research Institute Singapore, National Dental Centre, Singapore City, Singapore
| |
Collapse
|
4
|
Lo K, Liman AN, Zhang Y, Ye W. Tongue coating metabolic profiles of intra-oral halitosis patients. Oral Dis 2024. [PMID: 38852162 DOI: 10.1111/odi.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE This study focused on the metabolic characteristics of tongue coating in patients with intra-oral halitosis (IOH) to investigate potential diagnostic biomarkers for IOH. METHODS Oral healthy participants were enrolled in this study. Halitosis was evaluated with an organoleptic assessment, a Halimeter®, and an OralChroma™. Tongue coating samples were collected from 18 halitosis patients and 18 healthy controls. Liquid chromatography-mass spectrometry was conducted to reveal the IOH-related metabolic variations in tongue coating. RESULTS A total of 2214 metabolites were obtained. Most metabolites were shared between the two groups. A total of 274 upregulated metabolites, such as paramethasone acetate and indole-3-acetic acid, and 43 downregulated metabolites, including deoxyadenosine and valyl-arginine, were detected in the halitosis group. Functional analysis indicated that several metabolic pathways, including arginine biosynthesis, arginine and proline metabolism, histidine metabolism, and lysine degradation were significantly enriched in the IOH group. The least absolute shrinkage and selection operator logistic regression analysis revealed that paramethasone acetate, {1-[2-(4-carbamimidoyl-benzoylamino)-propionyl]-piperidin-4-yloxy}-acetic acid, indole-3-acetic acid, and valyl-arginine were remarkably associated with IOH. CONCLUSIONS This study revealed the metabolites present in tongue coating and identified effective biomarkers, providing essential insights into the prediction, pathogenesis, and diagnosis of IOH.
Collapse
Affiliation(s)
- Kalam Lo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Aviella Nathania Liman
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Ye
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Awarun OD, Olufunke Olojede A, Olaniran AF, Osarenkhoe Osemwegie O, Thomas R, Oluwagbenga OS. The Role of Enteric Bacteria in Elemental Sulfur Therapy. 2024 INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND BUSINESS FOR DRIVING SUSTAINABLE DEVELOPMENT GOALS (SEB4SDG) 2024:1-6. [DOI: 10.1109/seb4sdg60871.2024.10629850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Olorunfemi Dapo Awarun
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | | | | | | | - Remileku Thomas
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | - Owa Stephen Oluwagbenga
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| |
Collapse
|
6
|
Liu Q, Liu Y, Wan Q, Lu Q, Liu J, Ren Y, Tang J, Su Q, Luo Y. Label-Free, Reusable, Equipment-Free, and Visual Detection of Hydrogen Sulfide Using a Colorimetric and Fluorescent Dual-Mode Sensing Platform. Anal Chem 2023; 95:5920-5926. [PMID: 36989391 DOI: 10.1021/acs.analchem.2c05364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this work, we have found for the first time that the fluorescence of rhodamine B (RhB) would be dramatically reduced after it bound to hemin/G-quadruplex and reacted with •OH. Based on this finding, we have designed a colorimetric and fluorescent dual-mode sensing platform for visual detection of hydrogen sulfide (H2S). The constructed sensor is based on the formation of dsDNA and the G-quadruplex structure by the cytosine-Ag+-cytosine mismatch, causing H2O2-mediated catalysis to oxidize ABTS or RhB to induce a colorimetric or fluorescent change. In the presence of H2S, the solution color for colorimetric and fluorescent assays would change from dark green to pink and from green (fluorescence off) to bright yellow (fluorescence on), respectively. This dual-mode assay showed high selectivity toward H2S over other interference materials with a low measurable detection limit value (below than 2.5 μM), and it has been successfully applied to H2S visual detection in real samples. Moreover, the dual-mode sensing strategy presented an excellent reutilization character both in colorimetric and fluorescent assays. This method was employed as a label-free, simple, fast, and equipment-free platform for H2S detection with high selectivity and reusability. This work realized naked-eye detection both in colorimetric and fluorescent analysis at a lower concentration of H2S, demonstrating a promising strategy for on-site visual detection of H2S.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qing Wan
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qinrui Lu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yonggang Ren
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qiang Su
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, Sichuan 637000, P. R. China
| | - Yingping Luo
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
7
|
Ahn BK, Ahn YJ, Lee YJ, Lee YH, Lee GJ. Simple and Sensitive Detection of Bacterial Hydrogen Sulfide Production Using a Paper-Based Colorimetric Assay. SENSORS (BASEL, SWITZERLAND) 2022; 22:5928. [PMID: 35957485 PMCID: PMC9371415 DOI: 10.3390/s22155928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) is known to participate in bacteria-induced inflammatory response in periodontal diseases. Therefore, it is necessary to quantify H2S produced by oral bacteria for diagnosis and treatment of oral diseases including halitosis and periodontal disease. In this study, we introduce a paper-based colorimetric assay for detecting bacterial H2S utilizing silver/Nafion/polyvinylpyrrolidone membrane and a 96-well microplate. This H2S-sensing paper showed a good sensitivity (8.27 blue channel intensity/μM H2S, R2 = 0.9996), which was higher than that of lead acetate paper (6.05 blue channel intensity/μM H2S, R2 = 0.9959). We analyzed the difference in H2S concentration released from four kinds of oral bacteria (Eikenella corrodens, Streptococcus sobrinus, Streptococcus mutans, and Lactobacillus casei). Finally, the H2S level in Eikenella corrodens while varying the concentration of cysteine and treatment time was quantified. This paper-based colorimetric assay can be utilized as a simple and effective tool for in vitro screening of H2S-producing ability of many bacteria as well as salivary H2S analysis.
Collapse
Affiliation(s)
- Byung-Ki Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yong-Jin Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Ju Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry, Seoul 02447, Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Engineering, Kyung Hee University Graduate School, Seoul 02447, Korea
| |
Collapse
|
8
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|