1
|
Li L, Chen L, Pan D, Zhu Y, Huang R, Chen J, Ye C, Yao S. Evaluation of different drying methods on the quality of Cinnamomum cassia barks by analytic hierarchy process method. Heliyon 2024; 10:e34608. [PMID: 39114071 PMCID: PMC11305288 DOI: 10.1016/j.heliyon.2024.e34608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Cinnamomum cassia Presl is a major food spice as well as traditional herbal medicine with anti-inflammatory, analgesic, and stomachic properties, which must be dried to preserve its quality, but mostly by using traditional, ineffective drying method. In order to find a scientific drying method by evaluating different drying methods that could influence the quality of C. cassia, ten indices were employed to evaluate different drying methods in C. cassia using the Analytic Hierarchy Process (AHP) method though calculating the total scores and ranking the priority. Four quality markers (Q-Markers) (coumarin, cinnamyl alcohol, cinnamaldehyde and o-methoxycinnamaldehyde) were isolated from the samples and analyzed by high performance liquid chromatography (HPLC) method under different drying methods. The results showed that various drying methods had multiple effects on the physicochemical qualities, essential oil content, and Q-Marker contents. Compared with other drying methods, oven-drying of 45 °C (45OD) maintained optimal levels of color and aroma, it also significantly shortened the drying time by 225 h than traditionally shade-drying (SHD) method with the drying rate (48.35 %), and obtained the highest essential oil content (3.05 %) and Q-Marker contents (30.23 mg g-1). Furthermore, the ash content (4.22 %) were satisfied with the stipulation of Chinese pharmacopoeia in 45OD samples. Applying AHP allowed us to identify 45OD as the optimal drying method with the highest total score (9.00), followed by the traditional shade-drying (SHD) method (7.88). The present study is the first report to apply the AHP method for quality evaluation of drying processing in C. cassia. It can provide the theoretical basis for evaluating an excellent method for C. cassia drying processing, as well as the rational use of different drying methods to furtherly develop the high quality C. cassia industry.
Collapse
Affiliation(s)
- Linshuang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuping Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dongjin Pan
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ying Zhu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chenying Ye
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
2
|
Yao S, Tan X, Huang D, Li L, Chen J, Ming R, Huang R, Yao C. Integrated transcriptomics and metabolomics analysis provides insights into aromatic volatiles formation in Cinnamomum cassia bark at different harvesting times. BMC PLANT BIOLOGY 2024; 24:84. [PMID: 38308239 PMCID: PMC10835945 DOI: 10.1186/s12870-024-04754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, β-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.
Collapse
Affiliation(s)
- Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Xiaoming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Linshuang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530200, China.
| | - Chun Yao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
3
|
Moreira LDSG, Brum IDSDC, de Vargas Reis DCM, Trugilho L, Chermut TR, Esgalhado M, Cardozo LFMF, Stenvinkel P, Shiels PG, Mafra D. Cinnamon: an aromatic condiment applicable to chronic kidney disease. Kidney Res Clin Pract 2023; 42:4-26. [PMID: 36747357 PMCID: PMC9902738 DOI: 10.23876/j.krcp.22.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cinnamon, a member of the Lauraceae family, has been widely used as a spice and traditional herbal medicine for centuries and has shown beneficial effects in cardiovascular disease, obesity, and diabetes. However, its effectiveness as a therapeutic intervention for chronic kidney disease (CKD) remains unproven. The bioactive compounds within cinnamon, such as cinnamaldehyde, cinnamic acid, and cinnamate, can mitigate oxidative stress, inflammation, hyperglycemia, gut dysbiosis, and dyslipidemia, which are common complications in patients with CKD. In this narrative review, we assess the mechanisms by which cinnamon may alleviate complications observed in CKD and the possible role of this spice as an additional nutritional strategy for this patient group.
Collapse
Affiliation(s)
| | | | | | - Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil
| | - Tuany R. Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | | | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden,Correspondence: Peter Stenvinkel Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital M99, 141 86 Stockholm, Sweden. E-mail:
| | - Paul G. Shiels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Exploring Myocardial Ischemia-Reperfusion Injury Mechanism of Cinnamon by Network Pharmacology, Molecular Docking, and Experiment Validation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:1066057. [PMID: 36873789 PMCID: PMC9981296 DOI: 10.1155/2023/1066057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a common complication of acute myocardial infarction that seriously endangers human health. Cinnamon, a traditional Chinese medicine, has been used to counteract MIRI as it has been shown to possess anti-inflammatory and antioxidant properties. To investigate the mechanisms of action of cinnamon in the treatment of MIRI, a deep learning-based network pharmacology method was established to predict potential active compounds and targets. The results of the network pharmacology showed that oleic acid, palmitic acid, beta-sitosterol, eugenol, taxifolin, and cinnamaldehyde were the main active compounds, and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), interleukin (IL)-7, and hypoxia-inducible factor 1 (HIF-1) are promising signaling pathways. Further molecular docking tests revealed that these active compounds and targets exhibited good binding abilities. Finally, experimental validation using a zebrafish model demonstrated that taxifolin, the active compound of cinnamon, has a potential protective effect against MIRI.
Collapse
|
5
|
Aggarwal S, Bhadana K, Singh B, Rawat M, Mohammad T, Al-Keridis LA, Alshammari N, Hassan MI, Das SN. Cinnamomum zeylanicum Extract and its Bioactive Component Cinnamaldehyde Show Anti-Tumor Effects via Inhibition of Multiple Cellular Pathways. Front Pharmacol 2022; 13:918479. [PMID: 35774603 PMCID: PMC9237655 DOI: 10.3389/fphar.2022.918479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cinnamomum zeylanicum is a tropical plant with traditional medicinal significance that possesses antimicrobial, antifungal, anti-parasitic, and anti-tumor properties. Here, we have elucidated the anti-tumor effects of Cinnamomum zeylanicum extract (CZE) and its bioactive compound cinnamaldehyde (CIN) on oral cancer and elucidated underlying molecular mechanisms. Anti-tumor activities of CZE and CIN were demonstrated by various in vitro experiments on oral cancer cells (SCC-4, SCC-9, SCC-25). The cell proliferation, growth, cell cycle arrest, apoptosis, and autophagy were analyzed by MTT, clonogenic assay, propidium iodide, annexin-V-PI, DAPI, and acridine orange staining, respectively. The binding affinity of CIN towards dihydrofolate reductase and p38-MAP kinase alpha was analyzed by molecular docking. Western blot assay was performed to assess the alteration in the expression of various proteins. CZE and CIN treatment significantly inhibited the growth and proliferation of oral cancer cells in a dose-dependent manner. These treatments further induced apoptosis, cell cycle arrest, and autophagy. CZE and CIN inhibited the invasion and cytoplasmic translocation of NF-κB in these cell lines. CIN showed a high affinity to MAP kinase P38 alpha and dihydrofolate reductase with binding affinities of −6.8 and −5.9 kcal/mol, respectively. The cancer cells showed a decreased expression of various PI3k-AKT-mTOR pathways related to VEGF, COX-2, Bcl-2, NF-κB, and proteins post-treatment.
Collapse
Affiliation(s)
- Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanchan Bhadana
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Baldeep Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Rawat
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| | - Satya N. Das
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| |
Collapse
|