1
|
Sajid MS, Ding Y, Varghese RS, Kroemer A, Ressom HW. Unveiling Endogenous Serum Peptides as Potential Biomarkers for Hepatocellular Carcinoma in Patients with Liver Cirrhosis. J Proteome Res 2024; 23:3974-3983. [PMID: 39177206 PMCID: PMC11385380 DOI: 10.1021/acs.jproteome.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, mainly associated with liver cirrhosis. Current diagnostic methods for HCC have limited sensitivity and specificity, highlighting the need for improved early detection and intervention. In this study, we used a comprehensive approach involving endogenous peptidome along with bioinformatics analysis to identify and evaluate potential biomarkers for HCC. Serum samples from 40 subjects, comprising 20 HCC cases and 20 patients with liver cirrhosis (CIRR), were analyzed. Among 2568 endogenous peptides, 67 showed significant differential expression between the HCC vs CIRR. Further analysis revealed three endogenous peptides (VMHEALHNHYTQKSLSLSPG, NRFTQKSLSLSPG, and SARQSTLDKEL) that showed far better performance compared to AFP in terms of area under the receiver operating characteristic curve (AUC), showcasing their potential as biomarkers for HCC. Additionally, endogenous peptide IAVEWESNGQPENNYKT that belongs to the precursor protein Immunoglobulin heavy constant gamma 4 was detected in 100% of the HCC group and completely absent in the CIRR group, suggesting a promising diagnostic biomarker. Gene ontology and pathway analysis revealed the potential involvement of these dysregulated peptides in HCC. These findings provide valuable insights into the molecular basis of HCC and may contribute to the development of improved diagnostic methods and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yuansong Ding
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Rency S Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Habtom W Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| |
Collapse
|
2
|
Kang M, Wang H, Chen C, Suo R, Sun J, Yue Q, Liu Y. Analytical strategies based on untargeted and targeted metabolomics for the accurate authentication of organic milk from Jersey and Yak. Food Chem X 2023; 19:100786. [PMID: 37780248 PMCID: PMC10534096 DOI: 10.1016/j.fochx.2023.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Organic milk has a high risk of food fraud as it can easily be adulterated with non-organic milk. This study aimed to identify metabolite markers for assessing the authenticity of organic milk from Jersey and Yak. In the untargeted strategy, ultra-high performance liquid chromatography-Q Exactive HF-X mass spectrometer coupled with chemometrics analysis was used to screen and identify tentative markers of organic milk from Jersey and Yak. In the targeted strategy, a quick and easy method of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to quantify three markers. The peptide of Thr-Ala-Val and D-biotin were determined to be metabolite markers for distinguishing organic and non-organic Jersey milk, whereas trimethylamine N-oxide was determined to be a metabolite marker for distinguishing organic and non-organic Yak milk. These findings provide critical information to facilitate assessments of organic milk authenticity.
Collapse
Affiliation(s)
- Min Kang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Hongxia Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Chuxin Chen
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Quanhong Yue
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| |
Collapse
|
3
|
A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling. Foods 2023; 12:foods12040876. [PMID: 36832951 PMCID: PMC9957330 DOI: 10.3390/foods12040876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
As a "rare bird on the plateau", the Tibetan chicken is rich in nutrition and has high medicinal value. In order to quickly and effectively identify the source of food safety problems and to label fraud regarding this animal, it is necessary to identify the geographical traceability of the Tibetan chicken. In this study, Tibetan chicken samples from four different cities in Tibet, China were analyzed. The amino acid profiles of Tibetan chicken samples were characterized and further subjected to chemometric analyses, including orthogonal least squares discriminant analysis, hierarchical cluster analysis, and linear discriminant analysis. The original discrimination rate was 94.4%, and the cross-validation rate was 93.3%. Moreover, the correlation between amino acid concentrations and altitudes in Tibetan chicken was studied. With the increase in altitude, all amino acid contents showed a normal distribution. For the first time, amino acid profiling has been comprehensively applied to trace the origin of plateau animal food with satisfactory accuracy.
Collapse
|
4
|
Bhandari SD, Gallegos-Peretz T, Wheat T, Jaudzems G, Kouznetsova N, Petrova K, Shah D, Hengst D, Vacha E, Lu W, Moore JC, Metra P, Xie Z. Amino Acid Fingerprinting of Authentic Nonfat Dry Milk and Skim Milk Powder and Effects of Spiking with Selected Potential Adulterants. Foods 2022; 11:foods11182868. [PMID: 36140996 PMCID: PMC9498471 DOI: 10.3390/foods11182868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
A collaborative study was undertaken in which five international laboratories participated to determine amino acid fingerprints in 39 authentic nonfat dry milk (NFDM)/skim milk powder (SMP) samples. A rapid method of amino acid analysis involving microwave-assisted hydrolysis followed by ultra-high performance liquid chromatography-ultraviolet detection (UHPLC-UV) was used for quantitation of amino acids and to calculate their distribution. The performance of this rapid method of analysis was evaluated and was used to determine the amino acid fingerprint of authentic milk powders. The distribution of different amino acids and their predictable upper and lower tolerance limits in authentic NFDM/SMP samples were established as a reference. Amino acid fingerprints of NFDM/SMP were compared with selected proteins and nitrogen rich compounds (proteins from pea, soy, rice, wheat, whey, and fish gelatin) which can be potential economically motivated adulterants (EMA). The amino acid fingerprints of NFDM/SMP were found to be affected by spiking with pea, soy, rice, whey, fish gelatin and arginine among the investigated adulterants but not by wheat protein and melamine. The study results establish an amino acid fingerprint of authentic NFDM/SMP and demonstrate the utility of this method as a tool in verifying the authenticity of milk powders and detecting their adulteration.
Collapse
Affiliation(s)
- Sneh D. Bhandari
- Merieux NutriSciences, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | | | - Thomas Wheat
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Gregory Jaudzems
- Nestlé Quality Assurance Center, 6625 Eiterman Rd., Dublin, OH 43017, USA
| | - Natalia Kouznetsova
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Katya Petrova
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Dimple Shah
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Daniel Hengst
- Eurofins Food Integrity and Innovation, Madison, WI 53704, USA
| | - Erika Vacha
- Eurofins Food Integrity and Innovation, Madison, WI 53704, USA
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeffrey C. Moore
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Pierre Metra
- Merieux NutriSciences Corporation, 113 Route de Paris, 69160 Tassin la Demi-Lune, France
| | - Zhuohong Xie
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
- Correspondence: ; Tel.: +1-240-221-2052
| |
Collapse
|
5
|
Determination of Free Amino Acids in Milk, Colostrum and Plasma of Swine via Liquid Chromatography with Fluorescence and UV Detection. Molecules 2022; 27:molecules27134153. [PMID: 35807399 PMCID: PMC9268350 DOI: 10.3390/molecules27134153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acids are ubiquitous components of mammalian milk and greatly contribute to its nutritional value. The compositional analysis of free amino acids is poorly reported in the literature even though their determination in the biological fluids of livestock animals is necessary to establish possible nutritional interventions. In the present study, the free amino acid profiles in mature swine milk, colostrum and plasma were assessed using a targeted metabolomics approach. In particular, 20 amino acids were identified and quantified via two alternative and complementary reversed-phase HPLC methods, involving two stationary phases based on core-shell technology, i.e., Kinetex C18 and Kinetex F5, and two detection systems, i.e., a diode array detector (DAD) and a fluorescence detector (FLD). The sample preparation involved a de-proteinization step, followed by pre-chromatographic derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). The two optimized methods were validated for specificity, linearity, sensitivity, matrix effect, accuracy and precision and the analytical performances were compared. The analytical methods proved to be suitable for free amino acid profiling in different matrices with high sensitivity and specificity. The correlations among amino acid levels in different biological fluids can be useful for the evaluation of physio-pathological status and to monitor the effects of therapeutic or nutritional interventions in humans and animals.
Collapse
|