1
|
Alhussaini AJ, Veluchamy A, Jawli A, Kernohan N, Tang B, Palmer CNA, Steele JD, Nabi G. Radiogenomics Pilot Study: Association Between Radiomics and Single Nucleotide Polymorphism-Based Microarray Copy Number Variation in Diagnosing Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Int J Mol Sci 2024; 25:12512. [PMID: 39684226 DOI: 10.3390/ijms252312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
RO and ChRCC are kidney tumours with overlapping characteristics, making differentiation between them challenging. The objective of this research is to create a radiogenomics map by correlating radiomic features to molecular phenotypes in ChRCC and RO, using resection as the gold standard. Fourteen patients (6 RO and 8 ChRCC) were included in the prospective study. A total of 1,875 radiomic features were extracted from CT scans, alongside 632 cytobands containing 16,303 genes from the genomic data. Feature selection algorithms applied to the radiomic features resulted in 13 key features. From the genomic data, 24 cytobands highly correlated with histology were selected and cross-correlated with the radiomic features. The analysis identified four radiomic features that were strongly associated with seven genomic features. These findings demonstrate the potential of integrating radiomic and genomic data to enhance the differential diagnosis of RO and ChRCC, paving the way for more precise and non-invasive diagnostic tools in clinical practice.
Collapse
Affiliation(s)
- Abeer J Alhussaini
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Abirami Veluchamy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Neil Kernohan
- Department of Pathology, Ninewells Hospital, Dundee DD9 1SY, UK
| | - Benjie Tang
- Surgical Skills Centre, Dundee Institute for Healthcare Simulation Respiratory Medicine and Gastroenterology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Pharmacogenetics, Population Health and Genomics, Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - J Douglas Steele
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Cancer Research, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
2
|
Marfisi D, Giannelli M, Marzi C, Del Meglio J, Barucci A, Masturzo L, Vignali C, Mascalchi M, Traino A, Casolo G, Diciotti S, Tessa C. Test-retest repeatability of myocardial radiomic features from quantitative cardiac magnetic resonance T1 and T2 mapping. Magn Reson Imaging 2024; 113:110217. [PMID: 39067653 DOI: 10.1016/j.mri.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Radiomics of cardiac magnetic resonance (MR) imaging has proved to be potentially useful in the study of various myocardial diseases. Therefore, assessing the repeatability degree in radiomic features measurement is of fundamental importance. The aim of this study was to assess test-retest repeatability of myocardial radiomic features extracted from quantitative T1 and T2 maps. A representative group of 24 subjects (mean age 54 ± 18 years) referred for clinical cardiac MR imaging were enrolled in the study. For each subject, T1 and T2 mapping through MOLLI and T2-prepared TrueFISP acquisition sequences, respectively, were performed at 1.5 T. Then, 98 radiomic features of different classes (shape, first-order, second-order) were extracted from a region of interest encompassing the whole left ventricle myocardium in a short axis slice. The repeatability was assessed performing different and complementary analyses: intraclass correlation coefficient (ICC) and limits of agreement (LOA) (i.e., the interval within which 95% of the percentage differences between two repeated measures are expected to lie). Radiomic features were characterized by a relatively wide range of repeatability degree in terms of both ICC and LOA. Overall, 44.9% and 38.8% of radiomic features showed ICC values > 0.75 for T1 and T2 maps, respectively, while 25.5% and 23.4% of radiomic features showed LOA between ±10%. A subset of radiomic features for T1 (Mean, Median, 10Percentile, 90Percentile, RootMeanSquared, Imc2, RunLengthNonUniformityNormalized, RunPercentage and ShortRunEmphasis) and T2 (MaximumDiameter, RunLengthNonUniformityNormalized, RunPercentage, ShortRunEmphasis) maps presented both ICC > 0.75 and LOA between ±5%. Overall, radiomic features extracted from T1 maps showed better repeatability performance than those extracted from T2 maps, with shape features characterized by better repeatability than first-order and textural features. Moreover, only a limited subset of 9 and 4 radiomic features for T1 and T2 maps, respectively, showed high repeatability degree in terms of both ICC and LOA. These results confirm the importance of assessing test-retest repeatability degree in radiomic feature estimation and might be useful for a more effective/reliable use of myocardial T1 and T2 mapping radiomics in clinical or research studies.
Collapse
Affiliation(s)
- Daniela Marfisi
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy.
| | - Chiara Marzi
- Department of Statistics, Computer Science, Applications "Giuseppe Parenti", University of Florence, 50134 Florence, Italy
| | - Jacopo Del Meglio
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara" (IFAC), Council of National Research (CNR), 50019 Sesto Fiorentino, Italy
| | - Luigi Masturzo
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Claudio Vignali
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy; Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Antonio Traino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126 Pisa, Italy
| | - Giancarlo Casolo
- Unit of Cardiology, Azienda USL Toscana Nord Ovest, Versilia Hospital, 55041 Lido di Camaiore, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 47522 Cesena, Italy
| | - Carlo Tessa
- Unit of Radiology, Azienda USL Toscana Nord Ovest, Apuane Hospital, 54100 Massa, Italy
| |
Collapse
|
3
|
Trojani V, Bassi MC, Verzellesi L, Bertolini M. Impact of Preprocessing Parameters in Medical Imaging-Based Radiomic Studies: A Systematic Review. Cancers (Basel) 2024; 16:2668. [PMID: 39123396 PMCID: PMC11311340 DOI: 10.3390/cancers16152668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lately, radiomic studies featuring the development of a signature to use in prediction models in diagnosis or prognosis outcomes have been increasingly published. While the results are shown to be promising, these studies still have many pitfalls and limitations. One of the main issues of these studies is that radiomic features depend on how the images are preprocessed before their computation. Since, in widely known and used software for radiomic features calculation, it is possible to set these preprocessing parameters before the calculation of the radiomic feature, there are ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable preprocessing parameters for every used imaging modality. MATERIALS AND METHODS We performed a comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase, and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion criteria were studies where preprocessing parameters' influence on feature values and model predictions was addressed. Records lacking information on image acquisition parameters were excluded, and any eligible studies with full-text versions were included in the review process, while conference proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table divided by the imaging modalities subgroups. RESULTS After applying the inclusion and exclusion criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI, CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction. Key preprocessing steps include voxel resampling, normalization, and discretization, which influence feature robustness and reproducibility. In total, 44% of the included works studied the effects of an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From 2021, several studies started selecting the best set of preprocessing parameters based on models' best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the screened works. CONCLUSIONS From our work, we highlighted the need to harmonize the use of preprocessing parameters and their values, especially in light of future studies of prospective studies, which are still lacking in the current literature.
Collapse
Affiliation(s)
- Valeria Trojani
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | | | - Laura Verzellesi
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | - Marco Bertolini
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| |
Collapse
|
4
|
Bartnik K, Krzyziński M, Bartczak T, Korzeniowski K, Lamparski K, Wróblewski T, Grąt M, Hołówko W, Mech K, Lisowska J, Januszewicz M, Biecek P. A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation. Sci Rep 2024; 14:14779. [PMID: 38926517 PMCID: PMC11208561 DOI: 10.1038/s41598-024-65630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Transarterial chemoembolization (TACE) represent the standard of therapy for non-operative hepatocellular carcinoma (HCC), while prediction of long term treatment outcomes is a complex and multifactorial task. In this study, we present a novel machine learning approach utilizing radiomics features from multiple organ volumes of interest (VOIs) to predict TACE outcomes for 252 HCC patients. Unlike conventional radiomics models requiring laborious manual segmentation limited to tumoral regions, our approach captures information comprehensively across various VOIs using a fully automated, pretrained deep learning model applied to pre-TACE CT images. Evaluation of radiomics random survival forest models against clinical ones using Cox proportional hazard demonstrated comparable performance in predicting overall survival. However, radiomics outperformed clinical models in predicting progression-free survival. Explainable analysis highlighted the significance of non-tumoral VOI features, with their cumulative importance superior to features from the largest liver tumor. The proposed approach overcomes the limitations of manual VOI segmentation, requires no radiologist input and highlight the clinical relevance of features beyond tumor regions. Our findings suggest the potential of this radiomics models in predicting TACE outcomes, with possible implications for other clinical scenarios.
Collapse
Affiliation(s)
- Krzysztof Bartnik
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland.
| | - Mateusz Krzyziński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| | - Tomasz Bartczak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| | - Krzysztof Korzeniowski
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Krzysztof Lamparski
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Tadeusz Wróblewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Joanna Lisowska
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, Banacha 1a st., Warsaw, Poland
| | - Magdalena Januszewicz
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a st., 02-097, Warsaw, Poland
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75 st., Warsaw, Poland
| |
Collapse
|
5
|
Miranda J, Horvat N, Araujo-Filho JAB, Albuquerque KS, Charbel C, Trindade BMC, Cardoso DL, de Padua Gomes de Farias L, Chakraborty J, Nomura CH. The Role of Radiomics in Rectal Cancer. J Gastrointest Cancer 2023; 54:1158-1180. [PMID: 37155130 PMCID: PMC11301614 DOI: 10.1007/s12029-022-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE Radiomics is a promising method for advancing imaging assessment in rectal cancer. This review aims to describe the emerging role of radiomics in the imaging assessment of rectal cancer, including various applications of radiomics based on CT, MRI, or PET/CT. METHODS We conducted a literature review to highlight the progress of radiomic research to date and the challenges that need to be addressed before radiomics can be implemented clinically. RESULTS The results suggest that radiomics has the potential to provide valuable information for clinical decision-making in rectal cancer. However, there are still challenges in terms of standardization of imaging protocols, feature extraction, and validation of radiomic models. Despite these challenges, radiomics holds great promise for personalized medicine in rectal cancer, with the potential to improve diagnosis, prognosis, and treatment planning. Further research is needed to validate the clinical utility of radiomics and to establish its role in routine clinical practice. CONCLUSION Overall, radiomics has emerged as a powerful tool for improving the imaging assessment of rectal cancer, and its potential benefits should not be underestimated.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Jose A B Araujo-Filho
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | - Kamila S Albuquerque
- Department of Radiology, Hospital Beneficência Portuguesa, 637 Maestro Cardim, Sao Paulo, SP, 01323-001, Brazil
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Bruno M C Trindade
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| | - Daniel L Cardoso
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| |
Collapse
|
6
|
Loi S, Mori M, Palumbo D, Crippa S, Palazzo G, Spezi E, Del Vecchio A, Falconi M, De Cobelli F, Fiorino C. Limited impact of discretization/interpolation parameters on the predictive power of CT radiomic features in a surgical cohort of pancreatic cancer patients. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01649-y. [PMID: 37289267 DOI: 10.1007/s11547-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE To explore the variation of the discriminative power of CT (Computed Tomography) radiomic features (RF) against image discretization/interpolation in predicting early distant relapses (EDR) after upfront surgery. MATERIALS AND METHODS Data of 144 patients with pre-surgical high contrast CT were processed consistently with IBSI (Image Biomarker Standardization Initiative) guidelines. Image interpolation/discretization parameters were intentionally changed, including cubic voxel size (0.21-27 mm3) and binning (32-128 grey levels) in a 15 parameter's sets. After excluding RF with poor inter-observer delineation agreement (ICC < 0.80) and not negligible inter-scanner variability, the variation of 80 RF against discretization/interpolation was first quantified. Then, their ability in classifying patients with early distant relapses (EDR, < 10 months, previously assessed at the first quartile value of time-to-relapse) was investigated in terms of AUC (Area Under Curve) variation for those RF significantly associated to EDR. RESULTS Despite RF variability against discretization/interpolation parameters was large and only 30/80 RF showed %COV < 20 (%COV = 100*STDEV/MEAN), AUC changes were relatively limited: for 30 RF significantly associated with EDR (AUC values around 0.60-0.70), the mean values of SD of AUC variability and AUC range were 0.02 and 0.05 respectively. AUC ranges were between 0.00 and 0.11, with values ≤ 0.05 in 16/30 RF. These variations were further reduced when excluding the extreme values of 32 and 128 for grey levels (Average AUC range 0.04, with values between 0.00 and 0.08). CONCLUSIONS The discriminative power of CT RF in the prediction of EDR after upfront surgery for pancreatic cancer is relatively invariant against image interpolation/discretization within a large range of voxel sizes and binning.
Collapse
Affiliation(s)
- Sara Loi
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | | | - Stefano Crippa
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Gabriele Palazzo
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, Wales, UK
| | - Antonella Del Vecchio
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Francesco De Cobelli
- San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy.
| |
Collapse
|
7
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
Collinearity and Dimensionality Reduction in Radiomics: Effect of Preprocessing Parameters in Hypertrophic Cardiomyopathy Magnetic Resonance T1 and T2 Mapping. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010080. [PMID: 36671652 PMCID: PMC9854492 DOI: 10.3390/bioengineering10010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Radiomics and artificial intelligence have the potential to become a valuable tool in clinical applications. Frequently, radiomic analyses through machine learning methods present issues caused by high dimensionality and multicollinearity, and redundant radiomic features are usually removed based on correlation analysis. We assessed the effect of preprocessing-in terms of voxel size resampling, discretization, and filtering-on correlation-based dimensionality reduction in radiomic features from cardiac T1 and T2 maps of patients with hypertrophic cardiomyopathy. For different combinations of preprocessing parameters, we performed a dimensionality reduction of radiomic features based on either Pearson's or Spearman's correlation coefficient, followed by the computation of the stability index. With varying resampling voxel size and discretization bin width, for both T1 and T2 maps, Pearson's and Spearman's dimensionality reduction produced a slightly different percentage of remaining radiomic features, with a relatively high stability index. For different filters, the remaining features' stability was instead relatively low. Overall, the percentage of eliminated radiomic features through correlation-based dimensionality reduction was more dependent on resampling voxel size and discretization bin width for textural features than for shape or first-order features. Notably, correlation-based dimensionality reduction was less sensitive to preprocessing when considering radiomic features from T2 compared with T1 maps.
Collapse
|
9
|
Luo J, Jin P, Chen J, Chen Y, Qiu F, Wang T, Zhang Y, Pan H, Hong Y, Huang P. Clinical features combined with ultrasound-based radiomics nomogram for discrimination between benign and malignant lesions in ultrasound suspected supraclavicular lymphadenectasis. Front Oncol 2023; 13:1048205. [PMID: 36969024 PMCID: PMC10034097 DOI: 10.3389/fonc.2023.1048205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background Conventional ultrasound (CUS) is the first choice for discrimination benign and malignant lymphadenectasis in supraclavicular lymph nodes (SCLNs), which is important for the further treatment. Radiomics provide more comprehensive and richer information than radiographic images, which are imperceptible to human eyes. Objective This study aimed to explore the clinical value of CUS-based radiomics analysis in preoperative differentiation of malignant from benign lymphadenectasis in CUS suspected SCLNs. Methods The characteristics of CUS images of 189 SCLNs were retrospectively analyzed, including 139 pathologically confirmed benign SCLNs and 50 malignant SCLNs. The data were randomly divided (7:3) into a training set (n=131) and a validation set (n=58). A total of 744 radiomics features were extracted from CUS images, radiomics score (Rad-score) built were using least absolute shrinkage and selection operator (LASSO) logistic regression. Rad-score model, CUS model, radiomics-CUS (Rad-score + CUS) model, clinic-radiomics (Clin + Rad-score) model, and combined CUS-clinic-radiomics (Clin + CUS + Rad-score) model were built using logistic regression. Diagnostic accuracy was assessed by receiver operating characteristic (ROC) curve analysis. Results A total of 20 radiomics features were selected from 744 radiomics features and calculated to construct Rad-score. The AUCs of Rad-score model, CUS model, Clin + Rad-score model, Rad-score + CUS model, and Clin + CUS + Rad-score model were 0.80, 0.72, 0.85, 0.83, 0.86 in the training set and 0.77, 0.80, 0.82, 0.81, 0.85 in the validation set. There was no statistical significance among the AUC of all models in the training and validation set. The calibration curve also indicated the good predictive performance of the proposed nomogram. Conclusions The Rad-score model, derived from supraclavicular ultrasound images, showed good predictive effect in differentiating benign from malignant lesions in patients with suspected supraclavicular lymphadenectasis.
Collapse
Affiliation(s)
- Jieli Luo
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Peile Jin
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yajun Chen
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fuqiang Qiu
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tingting Wang
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huili Pan
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yurong Hong
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, Zhejiang University School of Medicine Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
- *Correspondence: Pintong Huang,
| |
Collapse
|
10
|
Zhang W, Zhang W, Li X, Cao X, Yang G, Zhang H. Predicting Tumor Perineural Invasion Status in High-Grade Prostate Cancer Based on a Clinical-Radiomics Model Incorporating T2-Weighted and Diffusion-Weighted Magnetic Resonance Images. Cancers (Basel) 2022; 15:cancers15010086. [PMID: 36612083 PMCID: PMC9817925 DOI: 10.3390/cancers15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To explore the role of bi-parametric MRI radiomics features in identifying PNI in high-grade PCa and to further develop a combined nomogram with clinical information. METHODS 183 high-grade PCa patients were included in this retrospective study. Tumor regions of interest (ROIs) were manually delineated on T2WI and DWI images. Radiomics features were extracted from lesion area segmented images obtained. Univariate logistic regression analysis and the least absolute shrinkage and selection operator (LASSO) method were used for feature selection. A clinical model, a radiomics model, and a combined model were developed to predict PNI positive. Predictive performance was estimated using receiver operating characteristic (ROC) curves, calibration curves, and decision curves. RESULTS The differential diagnostic efficiency of the clinical model had no statistical difference compared with the radiomics model (area under the curve (AUC) values were 0.766 and 0.823 in the train and test group, respectively). The radiomics model showed better discrimination in both the train cohort and test cohort (train AUC: 0.879 and test AUC: 0.908) than each subcategory image (T2WI train AUC: 0.813 and test AUC: 0.827; DWI train AUC: 0.749 and test AUC: 0.734). The discrimination efficiency improved when combining the radiomics and clinical models (train AUC: 0.906 and test AUC: 0.947). CONCLUSION The model including radiomics signatures and clinical factors can accurately predict PNI positive in high-grade PCa patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| | - Weiting Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiang Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoming Cao
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guoqiang Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (G.Y.); (H.Z.); Tel.: +86-18734198876 (G.Y.); +86-18635580000 (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Correspondence: (G.Y.); (H.Z.); Tel.: +86-18734198876 (G.Y.); +86-18635580000 (H.Z.)
| |
Collapse
|
11
|
Soleymani Y, Jahanshahi AR, Pourfarshid A, Khezerloo D. Reproducibility assessment of radiomics features in various ultrasound scan settings and different scanner vendors. J Med Imaging Radiat Sci 2022; 53:664-671. [PMID: 36266173 DOI: 10.1016/j.jmir.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Radiomics in Ultrasound (US) imaging has been investigated for the prediction and prognosis of cancers. However, inter-scanner and intra-scanner variations may affect the reproducibility of radiomics results. This study aims to evaluate the reproducibility of US textural radiomics features across various scan settings and scanner vendors. MATERIALS AND METHODS US images in quality control (QC) phantom were obtained by three scanners (Philips, Samsung, and Siemens) with different scan settings and parameters. Circular regions of interest (ROIs) inside isoechoic, hypoechoic, and hyperechoic objects were manually delineated. Forty textural radiomics features were extracted from each ROI, and then the robust features that could distinguish different echogenic objects were obtained by the Mann-Whitney U test. Reproducibility of the robust radiomics features was assessed by the intraclass correlation coefficient (ICC) and coefficient of variation (CV); ICC>0.90 and %CV<20 were considered reproducible. RESULTS According to the Mann-Whitney U test results, ten robust features could differentiate the hypoechoic, and 15 robust features could differentiate the hyperechoic objects from the isoechoic objects (P<0.001). The total ICC of the robust features for each echogenic object was >0.95 in different scanners and scan settings. Four and seven features were individually reproducible (%CV < 20, ICC>0.90) in hypoechoic and hyperechoic objects, respectively. Also, four features seem reproducible by changing the ROI location across the horizontal and vertical lines for both convex and linear array transducers. CONCLUSIONS Most of the US textural radiomics features in this study were not reproducible. However, several features showed high reproducibility at different scan settings and scanners. These features may also be reproducible when ROI size and location change slightly.
Collapse
Affiliation(s)
- Yunus Soleymani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Jahanshahi
- Tabriz University of Medical Sciences, Faculty of Medicine, Imam Reza Hospital, Department of Radiology
| | - Amin Pourfarshid
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Davood Khezerloo
- Department of Radiology, Faculty of Alliance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran & Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Effect of Gray Value Discretization and Image Filtration on Texture Features of the Pancreas Derived from Magnetic Resonance Imaging at 3T. J Imaging 2022; 8:jimaging8080220. [PMID: 36005463 PMCID: PMC9409719 DOI: 10.3390/jimaging8080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Radiomics of pancreas magnetic resonance (MR) images is positioned well to play an important role in the management of diseases characterized by diffuse involvement of the pancreas. The effect of image pre-processing configurations on these images has been sparsely investigated. Fifteen individuals with definite chronic pancreatitis (an exemplar diffuse disease of the pancreas) and 15 healthy individuals were included in this age- and sex-matched case-control study. MR images of the pancreas were acquired using a single 3T scanner. A total of 93 first-order and second-order texture features of the pancreas were compared between the study groups, by subjecting MR images of the pancreas to 7 image pre-processing configurations related to gray level discretization and image filtration. The studied parameters of intensity discretization did not vary in terms of their effect on the number of significant first-order texture features. The number of statistically significant first-order texture features varied after filtering (7 with the use of logarithm filter and 3 with the use of Laplacian of Gaussian filter with 5 mm σ). Intensity discretization generally affected the number of significant second-order texture features more markedly than filtering. The use of fixed bin number of 16 yielded 42 significant second-order texture features, fixed bin number of 128–38 features, fixed bin width of 6–24 features, and fixed bin width of 42–26 features. The specific parameters of filtration and intensity discretization had differing effects on radiomics signature of the pancreas. Relative discretization with fixed bin number of 16 and use of logarithm filter hold promise as pre-processing configurations of choice in future radiomics studies in diffuse diseases of the pancreas.
Collapse
|