1
|
Pei J, Cheng K, Liu T, Gao M, Wang S, Xu S, Guo Y, Ma L, Li W, Wang B, Yu J, Liu J. Early, non-invasive detection of radiation-induced lung injury using PET/CT by targeting CXCR4. Eur J Nucl Med Mol Imaging 2024; 51:1109-1120. [PMID: 38030744 DOI: 10.1007/s00259-023-06517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is a severe side effect of radiotherapy (RT) for thoracic malignancies and we currently lack established methods for the early detection of RILI. In this study, we synthesized a new tracer, [18F]AlF-NOTA-QHY-04, targeting C-X-C-chemokine-receptor-type-4 (CXCR4) and investigated its feasibility to detect RILI. METHODS An RILI rat model was constructed and scanned with [18F]AlF-NOTA-QHY-04 PET/CT and [18F]FDG PET/CT periodically after RT. Dynamic, blocking, autoradiography, and histopathological studies were performed on the day of peak uptake. Fourteen patients with radiation pneumonia, developed during or after thoracic RT, were subjected to PET scan using [18F]AlF-NOTA-QHY-04. RESULTS The yield of [18F]AlF-NOTA-QHY-04 was 28.5-43.2%, and the specific activity was 27-33 GBq/μmol. [18F]AlF-NOTA-QHY-04 was mainly excreted through the kidney. Significant increased [18F]AlF-NOTA-QHY-04 uptake in the irradiated lung compared with that in the normal lung in the RILI model was observed on day 6 post-RT and peaked on day 14 post-RT, whereas no apparent uptake of [18F]FDG was shown on days 7 and 15 post-RT. MicroCT imaging did not show pneumonia until 42 days post-RT. Significant intense [18F]AlF-NOTA-QHY-04 uptake was confirmed by autoradiography. Immunofluorescence staining demonstrated expression of CXCR4 was significantly increased in the irradiated lung tissue, which correlated with results obtained from hematoxylin-eosin and Masson's trichrome staining. In 14 patients with radiation pneumonia, maximum standardized uptake values (SUVmax) were significantly higher in the irradiated lung compared with those in the normal lung. SUVmax of patients with grade 2 RILI was significantly higher than that of patients with grade 1 RILI. CONCLUSION This study indicated that [18F]AlF-NOTA-QHY-04 PET/CT imaging can detect RILI non-invasively and earlier than [18F]FDG PET/CT in a rat model. Clinical studies verified its feasibility, suggesting the clinical potential of [18F]AlF-NOTA-QHY-04 as a PET/CT tracer for early monitoring of RILI.
Collapse
Affiliation(s)
- Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kai Cheng
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tianxin Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Gao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shijie Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanluan Guo
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Ma
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wanhu Li
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bolin Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Methods in Medicine CAM. Retracted: Risk Factors of Acute Radiation-Induced Lung Injury Induced by Radiotherapy for Esophageal Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9895053. [PMID: 37811299 PMCID: PMC10551501 DOI: 10.1155/2023/9895053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/2416196.].
Collapse
|
3
|
Zhang XZ, Tao SP, Liang SX, Chen SB, Liu FS, Jiang W, Chen MJ. Nomogram based on circulating lymphocyte subsets for predicting radiation pneumonia in esophageal squamous cell carcinoma. Front Immunol 2022; 13:938795. [PMID: 36105795 PMCID: PMC9465326 DOI: 10.3389/fimmu.2022.938795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Currently, the relationship between radiation pneumonia (RP) and circulating immune cell in patients with esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to explore the relationship between RP and circulating lymphocyte subsets in patients with ESCC receiving chemoradiotherapy (CRT), and develop a nomogram model to predict RP. Since we should implement clinical intervention to ≥ grade 2 RP, a nomogram model for ≥ grade 2 RP was also established to provide an early warning. Patients and methods This study retrospectively included 121 patients with ESCC receiving CRT from Guangxi Medical University Cancer Hospital from 2013 to 2021. Independent factors associated with occurrence of RP and ≥ grade 2 RP were identified by univariate and multivariate logistic regression analysis in the training cohort, and incorporated into nomograms. The predictive accuracy and discrimination of the model was assessed using Concordance Index (C-index), calibration curve and decision curve analysis (DCA). And each model was internally validated. Additionally, to verify the optimized predictive performance of the nomograms, the area under the ROC curve (AUC) of each nomogram was compared to that of single independent risk factors, lung V10 and lung V20, respectively. Moreover, each model was further evaluated for risk stratification to identify populations at high risk of RP and ≥ grade 2 RP. Results Multivariate analysis suggested that TNM stage, post-RT percentage of CD8+ T cell, and lung V15 were independent predictive factors of RP. Besides, pre- and post-RT percentage of CD8+ T cell, and V15 were independent factors of ≥ grade 2 RP. The C-indexes of RP and ≥ grade 2 RP nomograms were 0.809 (95% CI: 0.715-0.903) and 0.787 (95% CI: 0.685-0.889) in the training cohort, respectively. And the C-indexes of RP and ≥ grade 2 RP nomograms were 0.718 (95% CI: 0.544-0.892) and 0.621 (95% CI: 0.404-0.837) in the validation cohort, respectively. The calibration curves showed that the predicted values of model agreed well with actual observations. Moreover, DCA results indicated the applicability and accuracy of the models to predict RP and ≥ grade 2 RP. After stratification, the incidence of the high-risk group was significantly higher than that of the low-risk group with respect to either RP or ≥ grade 2 RP. Conclusion TNM stage, post-RT percentage of CD8+ T cell, and lung V15 were the independent predictors of RP toxicity. Pre- and post-RT percentage of CD8+ T cell, and lung V15 were the independent factors of ≥ grade 2 RP toxicity. The nomograms based on circulating lymphocyte subsets can robustly predict RP and ≥ grade 2 RP, guiding clinicians in risk stratification and early intervention.
Collapse
Affiliation(s)
- Xiao-zhen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Su-ping Tao
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shi-xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shu-bin Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fu-shuang Liu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Mao-jian Chen, ; Wei Jiang,
| | - Mao-jian Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Mao-jian Chen, ; Wei Jiang,
| |
Collapse
|