1
|
El-Gendy ZA, Ammar NM, Kassem AM, Attia MS, Afifi SM, Ibrahim AH, Emam SE, Ms Korany R, El-Nasser G El-Gendy A, Elshamy AI. Myricetin-loaded SBA-15 silica nanoparticles for enhanced management of pyrexia, pain, and inflammation through modulation of MAPK/NF-κB and COX-2/PGE-2 pathways: Evidence from the biochemical, histological, and metabolomic analysis. Int J Pharm 2024; 666:124775. [PMID: 39353498 DOI: 10.1016/j.ijpharm.2024.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Myricetin (MYR) is a natural flavonoid that has several biological functions. However, some of its beneficial effects are diminished due to low water solubility, stability, and bioavailability. Herein, several kinds of silica nanoparticles (MCM-41 and SBA-15) were loaded with MYR to improve its biological activity as an analgesic, antipyretic, and anti-inflammatory component, thereby overcoming its drawbacks. The nanoparticles (MYR@SBA-15) were formulated optimally, transforming MYR into an amorphous state. This transformation was confirmed via several strategies, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder x-ray diffraction. As a result, there was a significant enhancement in the solubility and rate of dissolution in water. The anti-inflammatory benefits as an innovative strategy and the underlying mechanism of action of MYR and its SBA-15 silica nanoparticles (MYR@SBA-15) were investigated based on the biochemical, histological, immunohistochemical, and metabolomic assays alongside their antipyretic and analgesic characteristics. Compared to the usage of raw MYR, the administration of MYR@SBA-15 at doses of 25, 50, and 100 mg/kg significantly decreases pain perception by inhibiting the body's writhing motions induced by acetic acid. Furthermore, it helps regulate increased body temperature caused by baking yeast and effectively stabilizes it. It reduces the release of NO and PGE-2 in a concentration-dependent manner by down-regulating iNOS and COX-2 expression in the inflammatory model. MYR and MYR@SBA-15 also inhibit the nuclear translocation of NF-κB, downregulate the expression of mitogen-activated protein kinases (MAPKs), such as p38, ERK1/2, and JNK protein, and reduce the generation of proinflammatory cytokines, such as TNF-α. In addition, inflammatory cardinal signs like paw edema caused by carrageenan in rats are greatly suppressed by MYR and MYR@SBA-15 treatment when compared to the untreated group. More noteworthy outcomes are shown in the MYR@SBA-15, particularly at a dose of 100 mg/kg. These results of biochemical and immuno-histochemistry suggest that MYR@SBA-15 may be a useful analgesic antipyretic and may also help reduce inflammation by altering MAPKs/NF-κB and COX-2/PGE-2 signaling cascades. Serum metabolomics study demonstrated modifications in various low molecular weight metabolites with arthritis development. These metabolite levels were restored to normal when MYR@SBA-15 was administered via modulating several metabolic pathways, i.e., pyrimidine, energy metabolism, and proteins. Overall, MYR-loaded SBA-15 silica nanoparticles have demonstrated significant promise in enhancing the disturbed metaboloic pathways and providing a substantial capacity to regulate several oxidative stress and inflammatory mediators.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Naglaa M Ammar
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sherif M Afifi
- Department for Life Quality Studies, Rimini Campus, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Sherif E Emam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Reda Ms Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Abd El-Nasser G El-Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
2
|
Xiong W, Chai J, Wu J, Li J, Lu W, Tian M, Jmel MA, Ippel JH, Kotsyfakis M, Dijkgraaf I, Liu S, Xu X. Cathelicidin-HG Alleviates Sepsis-Induced Platelet Dysfunction by Inhibiting GPVI-Mediated Platelet Activation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0381. [PMID: 38840901 PMCID: PMC11151873 DOI: 10.34133/research.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.
Collapse
Affiliation(s)
- Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Maolin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Johannes H. Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology,
Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zhang Y, Li Y, Quan Z, Xiao P, Duan JA. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants (Basel) 2024; 13:203. [PMID: 38397801 PMCID: PMC10886007 DOI: 10.3390/antiox13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-β/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.
Collapse
Affiliation(s)
| | | | | | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (Y.L.); (Z.Q.)
| |
Collapse
|
4
|
Sun Y, Li H, Duan X, Ma X, Liu C, Shang D. Chensinin-1b Alleviates DSS-Induced Inflammatory Bowel Disease by Inducing Macrophage Switching from the M1 to the M2 Phenotype. Biomedicines 2024; 12:345. [PMID: 38397947 PMCID: PMC10886634 DOI: 10.3390/biomedicines12020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder with an increasing prevalence worldwide. Macrophage polarization is involved in the pathogenesis of IBD. Repolarization of macrophage has thus emerged as a novel therapeutic approach for managing IBD. Chensinin-1b, derived from the skin of Rana chensinensis, is a derivative of a native antimicrobial peptide (AMP). It shows anti-inflammatory effects in sepsis models and can potentially modulate macrophage polarization. The objective of this research was to study the role of chensinin-1b in macrophage polarization and dextran sulfate sodium (DSS)-induced colitis. RAW264.7 macrophages were polarized to the M1 phenotype using lipopolysaccharide (LPS) and simultaneously administered chensinin-1b at various concentrations. The ability of chenisnin-1b to reorient macrophage polarization was assessed by ELISA, qRT-PCR, and flow cytometry analysis. The addition of chensinin-1b significantly restrained the expression of M1-associated proinflammatory cytokines and surface markers, including TNF-α, IL-6, NO, and CD86, and exaggerated the expression of M2-associated anti-inflammatory cytokines and surface markers, including IL-10, TGF-β1, Arg-1, Fizz1, Chil3, and CD206. Mechanistically, via Western Blotting, we revealed that chensinin-1b induces macrophage polarization from the M1 to the M2 phenotype by inhibiting the phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). In mouse models of colitis, intraperitoneal administration of chensinin-1b alleviated symptoms induced by DSS, including weight loss, elevated disease activity index (DAI) scores, colon shortening, colonic tissue damage, and splenomegaly. Consistent with our in vitro data, chensinin-1b induced significant decreases in the expression of M1 phenotype biomarkers and increases in the expression of M2 phenotype biomarkers in the mouse colitis model. Furthermore, chensinin-1b treatment repressesed NF-κB phosphorylation in vivo. Overall, our data showed that chensinin-1b attenuates IBD by repolarizing macrophages from the M1 to the M2 phenotype, suggesting its potential as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Huiyu Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Xingpeng Duan
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Xiaoxiao Ma
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Chenxi Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; (Y.S.)
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
5
|
Lu H, Chai J, Xu Z, Wu J, He S, Liao H, Huang P, Huang X, Chen X, Jiang H, Qu S, Xu X. Cath-KP, a novel peptide derived from frog skin, prevents oxidative stress damage in a Parkinson's disease model. Zool Res 2024; 45:108-124. [PMID: 38114437 PMCID: PMC10839659 DOI: 10.24272/j.issn.2095-8137.2023.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that results in dyskinesia, with oxidative stress playing a pivotal role in its progression. Antioxidant peptides may thus present therapeutic potential for PD. In this study, a novel cathelicidin peptide (Cath-KP; GCSGRFCNLFNNRRPGRLTLIHRPGGDKRTSTGLIYV) was identified from the skin of the Asiatic painted frog ( Kaloula pulchra). Structural analysis using circular dichroism and homology modeling revealed a unique αββ conformation for Cath-KP. In vitro experiments, including free radical scavenging and ferric-reducing antioxidant analyses, confirmed its antioxidant properties. Using the 1-methyl-4-phenylpyridinium ion (MPP +)-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, Cath-KP was found to penetrate cells and reach deep brain tissues, resulting in improved MPP +-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1 (Sirt1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation. Both focal adhesion kinase (FAK) and p38 were also identified as regulatory elements. In the MPTP-induced PD mice, Cath-KP administration increased the number of tyrosine hydroxylase (TH)-positive neurons, restored TH content, and ameliorated dyskinesia. To the best of our knowledge, this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress. These findings expand the known functions of cathelicidins, and hold promise for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Huanpeng Lu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zijian Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songzhe He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xi Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341001, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
6
|
Chai J, Wu J, Li J, Liao H, Lu W, Guo R, Shao Z, Jmel MA, Martins LA, Hackeng T, Ippel H, Dijkgraaf I, Kotsyfakis M, Xu X. Novel Amphibian Bowman-Birk-Like Inhibitor with Antioxidant and Anticoagulant Effects Ameliorates Pancreatitis Symptoms in Mice. J Med Chem 2023; 66:11869-11880. [PMID: 37610210 DOI: 10.1021/acs.jmedchem.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Acute pancreatitis (AP) is a serious inflammatory disorder and still lacks effective therapy globally. In this study, a novel Ranacyclin peptide, Ranacin, was identified from the skin of Pelophylax nigromaculatus frog. Ranacin adopted a compact β-hairpin conformation with a disulfide bond (Cys5-Cys15). Ranacin was also demonstrated effectively to inhibit trypsin and have anticoagulant and antioxidant activities in vitro. Furthermore, the severity of pancreatitis was significantly alleviated in l-Arg-induced AP mice after treatment with Ranacin. In addition, structure-activity studies of Ranacin analogues confirmed that the sequences outside the trypsin inhibitory loop (TIL), especially at the C-terminal side, might be closely associated with the efficacy of its trypsin inhibitory activity. In conclusion, our data suggest that Ranacin can improve pancreatic injury in mice with severe AP through its multi-activity. Therefore, Ranacin is considered a potential drug candidate in AP therapy.
Collapse
Affiliation(s)
- Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinqiao Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruiyin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zuoyan Shao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Larissa Almeida Martins
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Hans Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013 Heracklion, Crete, Greece
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Li J, Liang Y, Su M, Wu J, Chai J, Xiong W, Mo G, Chen X, Xu X. Characterization of a novel LTA/LPS-binding antimicrobial and anti-inflammatory temporin peptide from the skin of Fejervary limnocharis (Anura: Ranidae). Biochem Pharmacol 2023; 210:115471. [PMID: 36893813 DOI: 10.1016/j.bcp.2023.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Septic shock caused by Gram-positive bacteria continues to be a major cause of morbidity and mortality in intensive care units globally. Most Temporins are excellent growth inhibitors of gram-positive bacteria and candidates for developing antimicrobial treatments due to their biological action and small molecular weight. In this study, a novel Temporin peptide from the skin of Fejervarya limnocharis frog, named as Temporin-FL, was characterized. Temporin-FL was found to adopt typical α-helical conformation in SDS solution and to exhibit selective antibacterial activity against Gram-positive bacteria through a membrane destruction mechanism. Accordingly, Temporin-FL showed protective effects against Staphylococcus aureus-induced sepsis in mice. Finally, Temporin-FL was demonstrated to exert anti-inflammatory effects by neutralizing the action of LPS/LTA and by inhibiting MAPK pathway activation. Therefore, Temporin-FL represents a novel candidate for moleculartherapy of Gram-positive bacterial sepsis.
Collapse
Affiliation(s)
- Jinqiao Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Minhong Su
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|