1
|
Luo Y, Yang J, Wang Y. Quantitative proteomics assay reveals G protein-coupled receptor kinase 4-induced HepG2 cell growth inhibition. Heliyon 2024; 10:e29514. [PMID: 38638965 PMCID: PMC11024620 DOI: 10.1016/j.heliyon.2024.e29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Background and aim To investigate the biological effects and putative biological mechanism of G protein-coupled receptor kinase 4 (GRK4) on HepG2 cells. Materials and methods Cell proliferation, cycle, and apoptosis were evaluated by Cell Counting Kit-8 and flow cytometry (FCM) in HepG2 cells infected with either the GRK4-overexpressing lentivirus vector (OE) or the negative control lentivirus vector (NC). The protein profiles and differentially expressed proteins (DEPs) of the OE and NC cells were analyzed and compared using the quantitative proteomics technique, and their function, expression, and probable mechanism were investigated using bioinformatic assays and parallel reaction monitoring (PRM). Results HepG2 cells that received the OE grew more slowly than those that received the NC. FCM revealed that, when compared to the NC cells, the OE cells had undergone S-phase cycle arrest, and neither the OE nor NC cells underwent apoptosis. Among the 7006 proteins that were identified by quantitative proteomics, 403 DEPs were examined based on the filtering parameters, with the expressions of 135 being downregulated and 268 being upregulated. In addition to being involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, the DEPs were implicated in the biological processes of cell proliferation, cycle, and metabolism. PRM verified the expressions of DEPs that were connected to the PPAR pathway. Conclusions This study shows that GRK4 prevents HepG2 cells from proliferating and causes cell cycle arrest in the S-phase, while the PPAR pathway is involved in the regulation of HepG2 cells via GRK4.
Collapse
Affiliation(s)
- Yunxiu Luo
- Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Department of Radiotherapy Oncology, Haikou, 570311, China
- Hainan Clinical Research Center for Hepatopathy and Liver Critical Illness, Haikou, 570311, China
| | - Jing Yang
- Guilin Medical University, Center for Science Research, Guilin, 541004, China
| | - Yan Wang
- Central South University, The Second Xiangya Hospital, Department of Surgery, Changsha, 410011, China
| |
Collapse
|
2
|
Su Y, Lu Y, An H, Liu J, Ye F, Shen J, Ni Z, Huang B, Lin J. MicroRNA-204-5p Inhibits Hepatocellular Carcinoma by Targeting the Regulator of G Protein Signaling 20. ACS Pharmacol Transl Sci 2023; 6:1817-1828. [PMID: 38093845 PMCID: PMC10714421 DOI: 10.1021/acsptsci.3c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/14/2024]
Abstract
Although the oncogenic roles of regulator of G protein signaling 20 (RGS20) and its upstream microRNAs (miRNAs) have been reported, their involvement in hepatocellular carcinoma (HCC) remains unexplored. We utilized the starBase, miRDB, TargetScan, and mirDIP databases, along with a dual-luciferase reporter assay and cDNA chip analysis to identify miRNAs targeting RGS20. miR-204-5p was selected for further experiments to confirm its direct targeting and downregulation of the RGS20 expression. To study the miR-204-5p/RGS20 axis in HCC, RGS20 and miR-204-5p were increased in PLC/PRF/5/Hep3B cells, and the viability, hyperplasia, apoptosis, cell cycle, and invasion/migration of the cells were assessed. RGS20 exhibited optimism, while miR-204-5p exhibited pessimism in tumors. miR-204-5p directly targeted RGS20 and downregulated its expression, whereas high RGS20 expression indicated a poor prognosis. Transfection of miR-204-5p inhibited the hyperplasia, migration, and invasion of HCC cells, but promoted apoptosis and influenced the levels of cyclin-dependent kinase 2 (CDK2), cyclin E1, B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3/8. These effects were reversed by overexpression of RGS20. We recognized miR-204-5p as an upstream regulator targeting RGS20, thereby inhibiting HCC progression by downregulating RGS20 expression. RGS20 may prove to be a potential target for HCC treatment, and miR-204-5p might seem like to be a potential miRNA in gene therapy.
Collapse
Affiliation(s)
- Yanqing Su
- Department
of Pharmacy, Xiamen Children’s Hospital, Xiamen, Fujian 361006, China
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Yao Lu
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Hebei
Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, China
| | - Honglin An
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Jinhong Liu
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Feimin Ye
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Jiayu Shen
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Zhuona Ni
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
| | - Bin Huang
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiumao Lin
- Academy
of Integrative Medicine of Fujian University of Traditional Chinese
Medicine, Fuzhou, Fujian 350122, China
- Fujian
Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key
Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
3
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|