1
|
Mansoor A, Kamran H, Rizwan H, Akhter A, Roshan TM, Shabani-Rad MT, Bavi P, Stewart D. Expression of "DNA damage response" pathway genes in diffuse large B-cell lymphoma: The potential for exploiting synthetic lethality. Hematol Oncol 2024; 42:e3225. [PMID: 37795760 DOI: 10.1002/hon.3225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are two of the most prevalent non-Hodgkin's lymphoma subtypes. Despite advances, treatment resistance and patient relapse remain challenging issues. Our study aimed to scrutinize gene expression distinctions between DLBCL and FL, employing a cohort of 53 DLBCL and 104 FL samples that underwent rigorous screening for genetic anomalies. The NanoString nCounter assay evaluated 730 cancer-associated genes, focusing on densely tumorous areas in diagnostic samples. Employing the Lymph2Cx method, we determined the cell-of-origin (COO) for DLBCL cases. Our meticulous analysis, facilitated by Qlucore Omics Explorer software, unveiled a substantial 37% of genes with significantly differential expression patterns between DLBCL and FL, pointing to nuanced mechanistic disparities. Investigating the impact of FL disease stage and DLBCL COO on gene expression yielded minimal differences, prompting us to direct our attention to consistently divergent genes in DLBCL. Intriguingly, our Gene Set Enrichment Analysis spotlighted 21% of these divergent genes, converging on the DNA damage response (DDR) pathway, vital for cell survival and cancer evolution. Strong positive correlations among most DDR genes were noted, with key genes like BRCA1, FANCA, FEN1, PLOD1, PCNA, and RAD51 distinctly upregulated in DLBCL compared to FL and normal tissue controls. These findings were subsequently validated using RNA seq data on normal controls and DLBCL samples from public databases like The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, enhancing the robustness of our results. Considering the established significance of these DDR genes in solid cancer therapies, our study underscores their potential applicability in DLBCL treatment strategies. In conclusion, our investigation highlights marked gene expression differences between DLBCL and FL, with particular emphasis on the essential DDR pathway. The identification of these DDR genes as potential therapeutic targets encourages further exploration of synthetic lethality-based approaches for managing DLBCL.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Hamza Kamran
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Hassan Rizwan
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Tariq Mahmood Roshan
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Prashant Bavi
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|