1
|
S D, D S, P VK, K S. Enhancing pancreatic cancer classification through dynamic weighted ensemble: a game theory approach. Comput Methods Biomech Biomed Engin 2025; 28:145-169. [PMID: 37982236 DOI: 10.1080/10255842.2023.2281277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.
Collapse
Affiliation(s)
- Dhanasekaran S
- Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India
| | - Silambarasan D
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Tamil Nadu, India
| | - Vivek Karthick P
- Department of Electronics and Communication Engineering, Sona College of Technology, Salem, Tamil Nadu, India
| | - Sudhakar K
- Department of Electronics and Communication Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, India
| |
Collapse
|
2
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
3
|
Tian H, Zhang B, Zhang Z, Xu Z, Jin L, Bian Y, Wu J. DenseNet model incorporating hybrid attention mechanisms and clinical features for pancreatic cystic tumor classification. J Appl Clin Med Phys 2024; 25:e14380. [PMID: 38715381 PMCID: PMC11244679 DOI: 10.1002/acm2.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 07/14/2024] Open
Abstract
PURPOSE The aim of this study is to develop a deep learning model capable of discriminating between pancreatic plasma cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) by leveraging patient-specific clinical features and imaging outcomes. The intent is to offer valuable diagnostic support to clinicians in their clinical decision-making processes. METHODS The construction of the deep learning model involved utilizing a dataset comprising abdominal magnetic resonance T2-weighted images obtained from patients diagnosed with pancreatic cystic tumors at Changhai Hospital. The dataset comprised 207 patients with SCN and 93 patients with MCN, encompassing a total of 1761 images. The foundational architecture employed was DenseNet-161, augmented with a hybrid attention mechanism module. This integration aimed to enhance the network's attentiveness toward channel and spatial features, thereby amplifying its performance. Additionally, clinical features were incorporated prior to the fully connected layer of the network to actively contribute to subsequent decision-making processes, thereby significantly augmenting the model's classification accuracy. The final patient classification outcomes were derived using a joint voting methodology, and the model underwent comprehensive evaluation. RESULTS Using the five-fold cross validation, the accuracy of the classification model in this paper was 92.44%, with an AUC value of 0.971, a precision rate of 0.956, a recall rate of 0.919, a specificity of 0.933, and an F1-score of 0.936. CONCLUSION This study demonstrates that the DenseNet model, which incorporates hybrid attention mechanisms and clinical features, is effective for distinguishing between SCN and MCN, and has potential application for the diagnosis of pancreatic cystic tumors in clinical practice.
Collapse
Affiliation(s)
- Hui Tian
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Bo Zhang
- School of Medical TechnologyBinzhou PolytechnicShandongChina
| | - Zhiwei Zhang
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Zhenshun Xu
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Liang Jin
- Department of RadiologyHuadong HospitalFudan UniversityShanghaiChina
| | - Yun Bian
- Department of RadiologyChanghai HospitalThe Navy Military Medical UniversityShanghaiChina
| | - Jie Wu
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
4
|
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge CP, Daye D. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel) 2024; 14:174. [PMID: 38248051 PMCID: PMC10814554 DOI: 10.3390/diagnostics14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.
Collapse
Affiliation(s)
- Satvik Tripathi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Christopher P. Bridge
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Healthcare Engineering JO. Retracted: Design of Optimal Deep Learning-Based Pancreatic Tumor and Nontumor Classification Model Using Computed Tomography Scans. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:9878512. [PMID: 37860439 PMCID: PMC10584591 DOI: 10.1155/2023/9878512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/2872461.].
Collapse
|
6
|
Dinesh MG, Bacanin N, Askar SS, Abouhawwash M. Diagnostic ability of deep learning in detection of pancreatic tumour. Sci Rep 2023; 13:9725. [PMID: 37322046 PMCID: PMC10272117 DOI: 10.1038/s41598-023-36886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Pancreatic cancer is associated with higher mortality rates due to insufficient diagnosis techniques, often diagnosed at an advanced stage when effective treatment is no longer possible. Therefore, automated systems that can detect cancer early are crucial to improve diagnosis and treatment outcomes. In the medical field, several algorithms have been put into use. Valid and interpretable data are essential for effective diagnosis and therapy. There is much room for cutting-edge computer systems to develop. The main objective of this research is to predict pancreatic cancer early using deep learning and metaheuristic techniques. This research aims to create a deep learning and metaheuristic techniques-based system to predict pancreatic cancer early by analyzing medical imaging data, mainly CT scans, and identifying vital features and cancerous growths in the pancreas using Convolutional Neural Network (CNN) and YOLO model-based CNN (YCNN) models. Once diagnosed, the disease cannot be effectively treated, and its progression is unpredictable. That's why there's been a push in recent years to implement fully automated systems that can sense cancer at a prior stage and improve diagnosis and treatment. The paper aims to evaluate the effectiveness of the novel YCNN approach compared to other modern methods in predicting pancreatic cancer. To predict the vital features from the CT scan and the proportion of cancer feasts in the pancreas using the threshold parameters booked as markers. This paper employs a deep learning approach called a Convolutional Neural network (CNN) model to predict pancreatic cancer images. In addition, we use the YOLO model-based CNN (YCNN) to aid in the categorization process. Both biomarkers and CT image dataset is used for testing. The YCNN method was shown to perform well by a cent percent of accuracy compared to other modern techniques in a thorough review of comparative findings.
Collapse
Affiliation(s)
- M G Dinesh
- Department of Computer Science and Engineering, EASA College of Engineering and Technology, Coimbatore, India
| | | | - S S Askar
- Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Abouhawwash
- Department of Computational Mathematics, Science and Engineering (CMSE), College of Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Vaiyapuri T, Dutta AK, Punithavathi ISH, Duraipandy P, Alotaibi SS, Alsolai H, Mohamed A, Mahgoub H. Intelligent Deep-Learning-Enabled Decision-Making Medical System for Pancreatic Tumor Classification on CT Images. Healthcare (Basel) 2022; 10:healthcare10040677. [PMID: 35455854 PMCID: PMC9027672 DOI: 10.3390/healthcare10040677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Decision-making medical systems (DMS) refer to the design of decision techniques in the healthcare sector. They involve a procedure of employing ideas and decisions related to certain processes such as data acquisition, processing, judgment, and conclusion. Pancreatic cancer is a lethal type of cancer, and its prediction is ineffective with current techniques. Automated detection and classification of pancreatic tumors can be provided by the computer-aided diagnosis (CAD) model using radiological images such as computed tomography (CT) and magnetic resonance imaging (MRI). The recently developed machine learning (ML) and deep learning (DL) models can be utilized for the automated and timely detection of pancreatic cancer. In light of this, this article introduces an intelligent deep-learning-enabled decision-making medical system for pancreatic tumor classification (IDLDMS-PTC) using CT images. The major intention of the IDLDMS-PTC technique is to examine the CT images for the existence of pancreatic tumors. The IDLDMS-PTC model derives an emperor penguin optimizer (EPO) with multilevel thresholding (EPO-MLT) technique for pancreatic tumor segmentation. Additionally, the MobileNet model is applied as a feature extractor with optimal auto encoder (AE) for pancreatic tumor classification. In order to optimally adjust the weight and bias values of the AE technique, the multileader optimization (MLO) technique is utilized. The design of the EPO algorithm for optimal threshold selection and the MLO algorithm for parameter tuning shows the novelty. A wide range of simulations was executed on benchmark datasets, and the outcomes reported the promising performance of the IDLDMS-PTC model on the existing methods.
Collapse
Affiliation(s)
- Thavavel Vaiyapuri
- Department of Computer Sciences, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia;
| | - I. S. Hephzi Punithavathi
- Department of Computer Science and Engineering, Sphoorthy Engineering College, Telangana, Hyderabad 501510, India;
| | - P. Duraipandy
- Department of Electrical and Electronics Engineering, J. B. Institute of Engineering and Technology, Telangana, Hyderabad 500075, India;
| | - Saud S. Alotaibi
- Department of Information Systems, College of Computing and Information System, Umm Al-Qura University, Mecca 21911, Saudi Arabia;
| | - Hadeel Alsolai
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdullah Mohamed
- Research Centre, Future University in Egypt, New Cairo, Cairo 11745, Egypt;
| | - Hany Mahgoub
- Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Abha 61421, Saudi Arabia
- Correspondence:
| |
Collapse
|