1
|
Bencomo T, Lee CS. Gene expression landscape of cutaneous squamous cell carcinoma progression. Br J Dermatol 2024; 191:760-774. [PMID: 38867481 DOI: 10.1093/bjd/ljae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Cutaneous squamous cell carcinomas (cSCCs) are the second most common human cancer and have been characterized by RNA sequencing (RNA-Seq); however, the transferability of findings from individual studies may be limited by small sample sizes and diverse analysis protocols. OBJECTIVES To define the transcriptome landscape at different stages in the progression of normal skin to cSCC via a meta-analysis of publicly available RNA-Seq samples. METHODS Whole-transcriptome data from 73 clinically normal skin samples, 46 actinic keratoses (AK) samples, 16 in situ SCC samples, 13 keratoacanthoma (KA) samples and 147 cSCC samples [including 30 samples from immunocompromised patients and 8 from individuals with recessive dystrophic epidermolysis bullosa (RDEB)] were uniformly processed to harmonize gene expression. Differential expression, fusion detection and cell-type deconvolution analyses were performed. RESULTS Individual RNA-Seq studies of cSCC demonstrated study-specific clustering and varied widely in their differential gene expression detection. Following batch correction, we defined a consensus set of differentially expressed genes (DEGs), including those altered in the preinvasive stages of cSCC development, and used single-cell RNA-Seq data to demonstrate that DEGs are often - but not always - expressed by tumour-specific keratinocytes (TSKs). Analysis of the cellular composition of cSCC, KA and RDEB-cSCC identified an increase in differentiated keratinocytes in KA, while RDEB-cSCC contained the most TSKs. Compared with cSCC arising in immunocompetent individuals, cSCC samples from immunosuppressed patients demonstrated fewer memory B cells and CD8+ T cells. A comprehensive and unbiased search for fusion transcripts in cSCC and intermediate disease stages identified few candidates that recurred in >1% of all specimens, suggesting that most cSCC are not driven by oncogenic gene fusions. Finally, using Genotype-Tissue Expression (GTEx) data, we distilled a novel 300-gene signature of chronic sun exposure that affirms greater cumulative ultraviolet (UV) exposure in later stages of cSCC development. CONCLUSIONS Our results define the gene expression landscape of cSCC progression, characterize cell subpopulation heterogeneity in cSCC subtypes that contribute to their distinct clinical phenotypes, demonstrate that gene fusions are not a common cause of cSCC and identify UV-responsive genes associated with cSCC development.
Collapse
Affiliation(s)
- Tomas Bencomo
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Carolyn S Lee
- Stanford Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Bahmad HF, Stoyanov K, Mendez T, Trinh S, Terp K, Qian L, Alexis J. Keratoacanthoma versus Squamous-Cell Carcinoma: Histopathological Features and Molecular Markers. Dermatopathology (Basel) 2024; 11:272-285. [PMID: 39449378 PMCID: PMC11503433 DOI: 10.3390/dermatopathology11040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Considerable controversy exists within the field of dermatopathology in differentiating keratoacanthoma (KA) from squamous-cell carcinoma (SCC). KAs are rapidly growing, benign squamous tumors that are typically well differentiated. This controversy stems from the diverging perspectives on the management, classification, and diagnosis of each entity. Many believe that KAs are benign neoplasms in which intervention may be unnecessary since they are self-limiting and resolve on their own. On the other hand, SCC needs to be treated, as it carries significant morbidity and mortality risks. Early diagnosis and treatment are vital to prevent serious consequences of SCC. Nevertheless, KAs may resemble SCC grossly and microscopically. Various ancillary tests, including immunohistochemical (IHC) staining, have been proposed to differentiate between these entities, though mixed patterns of expression can limit the diagnostic utility of these techniques. Research into this topic is ongoing, with newer genetic and molecular findings illuminating the previously difficult-to-understand aspects of KA and increasing our understanding of this entity. In this review, KA and SCC will be compared along the lines of histological features, genetic, immune, and molecular markers, differential diagnosis, and management to clarify the similarities, differences, and misconceptions about both entities.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Kalin Stoyanov
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Teresita Mendez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sally Trinh
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Kristy Terp
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Linda Qian
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - John Alexis
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Wang Y, Yao N, Sun J. Upregulation of miR-194-5p or silencing of PRC1 enhances radiotherapy sensitivity in esophageal squamous carcinoma cells. Heliyon 2023; 9:e22282. [PMID: 38046164 PMCID: PMC10686870 DOI: 10.1016/j.heliyon.2023.e22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Background To investigate the possible molecular mechanism of miR-194-5p/PRC1/Wnt/β-catenin signaling axis that regulates the invasive metastatic ability and radiotherapy sensitivity of esophageal squamous cell carcinoma (ESCC) cells. Methods ESCC-related differentially expressed miRNAs were identified by microarray analysis, followed by the identification of a putative target. The targeting relationship between miR-194-5p and PRC1 was assayed. A series of mimic and shRNA were transfected into ESCC cells to find out the mechanism of miR-194-5p in ESCC by regulating PRC1 through Wnt/β-catenin signaling pathway and their effect on cell proliferation, migration, invasion, and radiosensitivity as well as xenograft tumor growth and metastasis in nude mice. Results We demonstrated low miR-194-5p expression and high PRC1 expression in ESCC tissues and cells. PRC1 was confirmed as a putative target for miR-194-5p. High miR-194-5p or silenced PRC1 enhanced ESCC cell radiosensitivity but reduced proliferation, invasion, and migration via PRC1 through modulation of the Wnt/β-catenin signaling pathway. Animal experiments also validated that overexpression of miR-194-5p suppressed tumorigenesis and in vivo metastasis in nude mice.Conclusion: miR-194-5p can inhibit the Wnt/β-catenin signaling pathway through down-regulation of the PRC1 gene, thereby enhancing the sensitivity of ESCC cells to radiotherapy and attenuating the invasion and metastasis ability of ESCC cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Jie Sun
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| |
Collapse
|
4
|
Veenstra J, Ozog D, Loveless I, Adrianto I, Dimitrion P, Subedi K, Friedman BJ, Zhou L, Mi QS. Distinguishing Keratoacanthoma from Well-Differentiated Cutaneous Squamous Cell Carcinoma Using Single-Cell Spatial Pathology. J Invest Dermatol 2023; 143:2397-2407.e8. [PMID: 37419445 PMCID: PMC10840781 DOI: 10.1016/j.jid.2023.06.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023]
Abstract
Keratoacanthoma (KA) is a common keratinocyte neoplasm that is regularly classified as a type of cutaneous squamous cell carcinoma (cSCC) despite demonstrating benign behavior. Differentiating KA from well-differentiated cSCC is difficult in many cases due to the substantial overlap of clinical and histological features. Currently, no reliable discriminating markers have been defined, and consequently, KAs are often treated similarly to cSCC, creating unnecessary surgical morbidity and healthcare costs. In this study, we used RNA sequencing to identify key differences in transcriptomes between KA and cSCC, which suggested divergent keratinocyte populations between each tumor. Imaging mass cytometry was then used to identify single-cell tissue characteristics, including cellular phenotype, frequency, topography, functional status, and interactions between KA and well-differentiated cSCC. We found that cSCC had significantly increased proportions of Ki67+ keratinocytes among tumor keratinocytes, which were dispersed significantly throughout non-basal keratinocyte communities. In cSCC, regulatory T-cells were more prevalent and held greater suppressive capacity. Furthermore, cSCC regulatory T-cells, tumor-associated macrophages, and fibroblasts had significant associations with Ki67+ keratinocytes as opposed to avoidances with KA, indicating a more immunosuppressive environment. Our data suggest that multicellular spatial features can serve as a foundation to enhance the histological discrimination of ambiguous KA and cSCC lesions.
Collapse
Affiliation(s)
- Jesse Veenstra
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - David Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ian Loveless
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA; Department of Computational Mathematics, Science, and Engineering; Medical Imaging and Data Integration Lab; Michigan State University, East Lansing, Michigan, USA
| | - Indra Adrianto
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - Kalpana Subedi
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA
| | - Ben J Friedman
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA; Center for Cutaneous Biology and Immunology, Henry Ford Health, Detroit, Michigan, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA; Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, USA.
| |
Collapse
|