1
|
Scarpa F, Casu M. Genomics and Bioinformatics in One Health: Transdisciplinary Approaches for Health Promotion and Disease Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1337. [PMID: 39457310 PMCID: PMC11507412 DOI: 10.3390/ijerph21101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
The One Health concept underscores the interconnectedness of human, animal, and environmental health, necessitating an integrated, transdisciplinary approach to tackle contemporary health challenges. This perspective paper explores the pivotal role of genomics and bioinformatics in advancing One Health initiatives. By leveraging genomic technologies and bioinformatics tools, researchers can decode complex biological data, enabling comprehensive insights into pathogen evolution, transmission dynamics, and host-pathogen interactions across species and environments (or ecosystems). These insights are crucial for predicting and mitigating zoonotic disease outbreaks, understanding antimicrobial resistance patterns, and developing targeted interventions for health promotion and disease prevention. Furthermore, integrating genomic data with environmental and epidemiological information enhances the precision of public health responses. Here we discuss case studies demonstrating successful applications of genomics and bioinformatics in One Health contexts, such as including data integration, standardization, and ethical considerations in genomic research. By fostering collaboration among geneticists, bioinformaticians, epidemiologists, zoologists, and data scientists, the One Health approach can harness the full potential of genomics and bioinformatics to safeguard global health. This perspective underscores the necessity of continued investment in interdisciplinary education, research infrastructure, and policy frameworks to effectively employ these technologies in the service of a healthier planet.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
2
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
3
|
Yan J, Doublet B, Wiedemann A. Trends in horizontal gene transfer research in Salmonella antimicrobial resistance: a bibliometric analysis. Front Microbiol 2024; 15:1439664. [PMID: 39328914 PMCID: PMC11424403 DOI: 10.3389/fmicb.2024.1439664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Horizontal gene transfer (HGT) favors the acquisition and spread of antimicrobial resistance (AMR) genes in Salmonella, making it a major public health concern. We performed a bibliometric analysis to provide the current landscape of HGT in research on Salmonella AMR and identify emerging trends and potential research directions for the future. Data were collected from the Web of Science Core Collection and limited to articles and reviews published between 1999 and 2024 in English. VOSviewer 1.6.19 and CiteSpace 6.2.R1 software were used to conduct bibliometric analysis and visualize co-occurring keywords. A total of 1,467 publications were retrieved for analysis. American researchers contributed the most articles (n = 310). In the meantime, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement have the highest citation/publication rate of 85.6. Recent studies have focused on the application of whole genome sequencing (WGS), Salmonella quinolone and colistin resistance, and the biocontrol of Salmonella AMR. These findings provide new insights into the role of HGT and help identify new targets for controlling the spread of AMR in Salmonella populations.
Collapse
Affiliation(s)
- Jin Yan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
4
|
Wang X, Li H, Yang Y, Wu Z, Wang Z, Li D, Xia W, Zou S, Liu Y, Wang F. Geographic and environmental impacts on gut microbiome in Himalayan langurs ( Semnopithecus schistaceus) and Xizang macaques ( Macaca mulatta vestita). Front Microbiol 2024; 15:1452101. [PMID: 39296299 PMCID: PMC11408304 DOI: 10.3389/fmicb.2024.1452101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Gut microbiome plays a crucial role in the health of wild animals. Their structural and functional properties not only reflect the host's dietary habits and habitat conditions but also provide essential support for ecological adaptation in various environments. Methods This study investigated the gut microbiome of Himalayan langurs (Semnopithecus schistaceus) and Xizang macaques (Macaca mulatta vestita) across different geographic regions using 16S rRNA gene and metagenomic sequencing. Results Results showed distinct clustering patterns in gut microbiota based on geographic location. Soil had an insignificant impact on host gut microbiome. Himalayan langurs from mid-altitude regions exhibited higher levels of antibiotic resistance genes associated with multidrug resistance, while Xizang macaques from high-altitude regions showed a broader range of resistance genes. Variations in carbohydrate-active enzymes and KEGG pathways indicated unique metabolic adaptations to different environments. Discussion These findings provide valuable insights into the health and conservation of these primates and the broader implications of microbial ecology and functional adaptations in extreme conditions.
Collapse
Affiliation(s)
- Xueyu Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Hong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhijiu Wu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhixiang Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Dayong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Wancai Xia
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Shuzhen Zou
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yujia Liu
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Fan Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
5
|
Mahmud Z, Manik MRK, Rahman A, Karim MM, Islam LN. Impact of untreated tannery wastewater in the evolution of multidrug-resistant bacteria in Bangladesh. Sci Rep 2024; 14:20379. [PMID: 39223208 PMCID: PMC11369239 DOI: 10.1038/s41598-024-71472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The tannery industry produces one of the worst contaminants, and unsafe disposal in nearby waterbodies and landfills has become an imminent threat to public health, especially when the resulting multidrug-resistant bacteria and heavy metals enter community settings and animal food chains. In this study, we have collected 10 tannery wastewater (TWW) samples and 10 additional non-tannery wastewater (NTW) samples to compare the chemical oxygen demand (COD), pH, biological oxygen demand (BOD), dissolved oxygen (DO), total dissolved solids (TDS), chromium concentration, bacterial load, and antibiotic resistance profiles. While COD, pH, and chromium concentration data were previously published from our lab, this part of the study uncovers that TWW samples had a significantly higher bacterial load, compared to the non-tannery wastewater samples (5.89 × 104 and 9.38 × 103 cfu/mL, respectively), higher BOD and TDS values, and significantly lower DO values. The results showed that 53.4, 46.7, 40.0, and 40.0% of the TWW isolates were resistant to ceftriaxone, erythromycin, nalidixic acid, and azithromycin, respectively. On the other hand, 20.0, 30.0, 50.0, and 40.0% of the NTW isolates were resistant to the same antibiotics, respectively. These findings suggest that the TWW isolates were more resistant to antibiotics than the NTW isolates. Moreover, the TWW isolates exhibited higher multidrug resistance than the NTW isolates, 33.33, and 20.00%, respectively. Furthermore, spearman correlation analysis depicts that there is a negative correlation between BOD and bacterial load up to a certain level (r = - 0.7749, p = 0.0085). In addition, there is also a consistent negative correlation between COD and bacterial load (r = - 0.7112, p = 0.0252) and TDS and bacterial load (r = - 0.7621, p = 0.0104). These findings suggest that TWW could pose a significant risk to public health and the environment and highlight the importance of proper wastewater treatment in tannery industries.
Collapse
Affiliation(s)
- Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Adua Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Laila N Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
6
|
Le HTT, Hoang TT, Nguyen NAT, Nguyen SN, Nguyen UD, Hoang CX, Vo NS, Le DQ, Nguyen SH, Cao MD, Ho TH. Whole-Genome Sequencing Reveals Temporal Trends in Antibiotic Resistance Genes in Escherichia coli Causing Pediatric Urinary Tract Infections in Central Vietnam. Antibiotics (Basel) 2024; 13:830. [PMID: 39335004 PMCID: PMC11428410 DOI: 10.3390/antibiotics13090830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Pediatric urinary tract infections (UTIs) pose significant challenges due to drug-resistant Escherichia coli (E. coli) strains. This study utilizes whole-genome sequencing to analyze temporal trends in antibiotic resistance genes (ARGs) in clinical E. coli isolates from pediatric UTI cases in central Vietnam. (2) Methods: We conducted whole-genome sequencing on 71 E. coli isolates collected from pediatric UTI patients between 2018 and 2020. ARGs were identified, and their prevalence over time was analyzed. Statistical tests were used to correlate ARG presence with antibiotic resistance. (3) Results: Of the 47 E. coli isolates with complete data, 40 distinct ARGs were identified, with a median of 10 resistance genes per isolate. A significant increase in the total number of ARGs per isolate was observed over time, from an average of 8.88 before June 2019 to 11.63 after. Notably, the prevalence of the aadA2 gene (aminoglycoside resistance) rose from 0% to 26.7%, and that of the blaNDM-5 gene (beta-lactam and carbapenem resistance) increased from 0% to 23.3%. Key correlations include blaEC with cephalosporin resistance, blaNDM-5 with carbapenem resistance, and sul2 with sulfamethoxazole/trimethoprim resistance. (4) Conclusions: Whole-genome sequencing reveals complex and evolving antibiotic resistance patterns in pediatric E. coli UTIs in central Vietnam, with a marked increase in ARG prevalence over time. Continuous surveillance and targeted treatments are essential to address these trends. Understanding genetic foundations is crucial for effective intervention strategies.
Collapse
Affiliation(s)
- Huyen Thanh Thi Le
- Department of Pediatrics, Faculty of Clinical Internal Medicine, Vinh Medical University, Vinh 431000, Vietnam;
| | - Trang Thu Hoang
- Department of Genomics, Institute of Biomedicine & Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.H.); (N.A.T.N.); (U.D.N.)
| | - Ngoc Anh Thi Nguyen
- Department of Genomics, Institute of Biomedicine & Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.H.); (N.A.T.N.); (U.D.N.)
| | - Sang Ngoc Nguyen
- Pediatric Department, Haiphong University of Medicine and Pharmacy, Haiphong 04254, Vietnam;
| | - Ung Dinh Nguyen
- Department of Genomics, Institute of Biomedicine & Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.H.); (N.A.T.N.); (U.D.N.)
| | - Cuong Xuan Hoang
- Department of Military Science, Vietnam Military Medical University, Hanoi 10000, Vietnam;
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi 10000, Vietnam;
| | - Duc Quang Le
- Faculty of IT, National University of Civil Engineering, Hanoi 11616, Vietnam;
| | | | - Minh Duc Cao
- Amromics JSC, Vinh 431000, Vietnam; (S.H.N.); (M.D.C.)
| | - Tho Huu Ho
- Department of Genomics, Institute of Biomedicine & Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.H.); (N.A.T.N.); (U.D.N.)
- Department of Microbiology, Vietnam Military Medical University, Hanoi 10000, Vietnam
| |
Collapse
|
7
|
Santos AJDC, Dias RS, da Silva CHM, Vidigal PMP, de Sousa MP, da Silva CC, de Paula SO. Genomic analysis of Oceanotoga teriensis strain UFV_LIMV02, a multidrug-resistant thermophilic bacterium isolated from an offshore oil reservoir. Access Microbiol 2024; 6:000801.v3. [PMID: 39148687 PMCID: PMC11326445 DOI: 10.1099/acmi.0.000801.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Bacteria of the species Oceanotoga teriensis belong to the family Petrotogaceae, are Gram-negative bacilli, are moderately thermophilic and are included in the group of thiosulfate-reducing bacteria, being capable of significantly accelerating corrosion in metallic structures. However, no in-depth study on the genome, antibiotic resistance and mobile elements has been carried out so far. In this work, the isolation, phenotypic and genotypic characterization of the multi-resistant O. teriensis UFV_LIMV02 strain was carried out, from water samples from an offshore oil extraction platform in Rio de Janeiro (Brazil). We determined that the isolate has a genome of 2 812 778 bp in size, with 26 % GC content, organized into 34 contigs. Genomic annotation using Rapid Annotation using Subsystem Technology revealed the presence of genes related to resistance to antibiotics and heavy metals. By evaluating the antimicrobial resistance of the isolate using the disc diffusion technique, resistance was verified for the classes of antibiotics, beta-lactams, fluoroquinolones, aminoglycosides, sulfonamides, lincosamides and rifamycins, a total of 14 antibiotics. The search for genomic islands, prophages and defence systems against phage infection revealed the presence of five genomic islands in its genome, containing genes related to resistance to heavy metals and antibiotics, most of which are efflux pumps and several transposases. No prophage was found in its genome; however, nine different defence systems against phage infection were detected. When analysing the clustered regularly interspaced short palindromic repeat (CRISPR) systems, four CRISPR arrays, classified as types I-B and III-B, with 272 spacers, can provide the strain with immunity to different mobile genetic elements and bacteriophage infection. The results found in this study show that the isolate UFV_LIVM02 is an environmental bacterium, resistant to different classes of antibiotics, and that the proteins encoded by the predicted genomic islands may be associated with the development of greater resistance to antibiotics and heavy metals. They provide evidence that environmental bacteria found in offshore oil exploration residues may pose a risk for the spread of antibiotic resistance genes. More comprehensive studies on the microbial community present in oil waste are needed to assess the risks of horizontal gene transfer.
Collapse
Affiliation(s)
- Adriele Jéssica do Carmo Santos
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Henrique Martins da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Marcus Pereira Vidigal
- Center for Biomolecules Analysis (NuBIOMOL), Federal University of Viçosa, Vila Gianetti, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Maíra Paula de Sousa
- Leopoldo Américo Miguez de Mello Research and Development Center, Petrobras, Av. Horácio Macedo, 950, Federal University of Rio de Janeiro, 21941-915, Rio de Janeiro, Brazil
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Le VH, Khong TD, Phan NQ, Tran TH, Vu HN, Van Quyen D, Hoang VT, Nguyen NT. High Prevalence of Colistin-Resistant Encoding Genes Carriage among Patients and Healthy Residents in Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1025. [PMID: 39064454 PMCID: PMC11278595 DOI: 10.3390/medicina60071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: We aimed to investigate the carriage of colistin-resistant genes among both patients with a history of antibiotic exposure and apparently healthy adults with no recent healthcare contact. Materials and Methods: Stool swabs were collected from healthy people, and specimens were collected at the infection foci from the patients. Eleven primer/probe sets were used to perform the Multiplex Real-Time PCR assay with the QuantiNova Multiplex Probe PCR kit for screening the carriage of colistin-resistant genes (mcr-1 to mcr-10) and 16S rRNA gene as internal control. Results: In total, 86 patients and 96 healthy residents were included. Twenty two patients (25.9%) were positive with at least one colistin-resistance encoding gene. The mcr-1 gene was the most frequent (16.5%), followed by mcr-9, mcr-6, and mcr-4 genes, where the prevalence was 11.8%, 10.6%, and 9.4%, respectively. No patient was positive with mcr-3, mcr-7, and mcr-8 genes. Eight patients (9.4%) were positive with multiple colistin-encoding genes. Twenty-three healthy people (24.0%) were positive with at least one colistin-resistance encoding gene, and the mcr-10 gene was the most frequent (27.0%), followed by the mcr-1, mcr-8, and mcr-9 genes, where the prevalence was 24.3%, 21.6%, and 13.5%, respectively. No person was positive with the mcr-2 and mcr-5 genes. Conclusions: Our findings underscore the urgent need for enhanced surveillance, infection control measures, and stewardship interventions to mitigate the spread of colistin resistance in Vietnam.
Collapse
Affiliation(s)
- Viet Ha Le
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam;
| | - Thi Diep Khong
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| | - Ngoc Quang Phan
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| | - Thi Hoa Tran
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| | - Hong Ngoc Vu
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| | - Dong Van Quyen
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam;
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
| | - Van Thuan Hoang
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| | - Nam Thang Nguyen
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam; (V.H.L.); (T.D.K.); (N.Q.P.); (T.H.T.); (H.N.V.); (V.T.H.)
| |
Collapse
|
10
|
Abbas A, Barkhouse A, Hackenberger D, Wright GD. Antibiotic resistance: A key microbial survival mechanism that threatens public health. Cell Host Microbe 2024; 32:837-851. [PMID: 38870900 DOI: 10.1016/j.chom.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.
Collapse
Affiliation(s)
- Amna Abbas
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra Barkhouse
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dirk Hackenberger
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
11
|
Strompfová V, Štempelová L, Bujňáková D, Karahutová L, Nagyová M, Siegfried L. Virulence determinants and antibiotic resistance in staphylococci isolated from the skin of captive bred reptiles. Vet Res Commun 2024; 48:1471-1480. [PMID: 38332421 PMCID: PMC11147882 DOI: 10.1007/s11259-024-10328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Knowledge of the composition and properties of skin microbiota in healthy reptiles is essential for preservation strategies and thus the prevention of skin dysbiosis leading to dermatological diseases. Despite the greatly increasing popularity of reptiles as pets, only a few studies have dealt with this topic. Therefore, the aim of this work was to analyse species composition of bacteria isolated from skin swabs of 40 reptiles (17 species) using MALDI-TOF spectrometry and to characterise the virulence properties of identified staphylococci (n = 51). The most common species were Staphylococcus xylosus and S. sciuri. Bacilli, enterococci, Escherichia coli, Salmonella sp. and Acinetobacter sp. were also common. The most frequent antimicrobial resistance in staphylococcal isolates was observed for ampicillin (100.0%) and cefoxitin (98.0%) with the blaZ gene being most prevalent (58.8%). In contrast, all staphylococci were susceptible to gentamicin, kanamycin and imipenem. Slime and biofilm production was observed in 86.3% and 76.5% of isolates, respectively. Gelatinase, DNase, protease and lipase activity was found more rarely (41.2%; 25.5%; 27.5% and 21.6%). Since reptiles are a reservoir of bacteria for their owners, common multi-drug resistance (84.3%, MAR index average 0.29 ± 0.09) and biofilm formation must be kept in mind, especially in the case of injury when handling reptiles.
Collapse
Affiliation(s)
- Viola Strompfová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 040 01, Slovakia.
| | - Lucia Štempelová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 040 01, Slovakia
| | - Dobroslava Bujňáková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 040 01, Slovakia
| | - Lívia Karahutová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 040 01, Slovakia
| | - Mária Nagyová
- Faculty of Medicine, Department of Medical and Clinical Microbiology, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Leonard Siegfried
- Faculty of Medicine, Department of Medical and Clinical Microbiology, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
12
|
Capasso C, Supuran CT. Carbonic anhydrase and bacterial metabolism: a chance for antibacterial drug discovery. Expert Opin Ther Pat 2024; 34:465-474. [PMID: 38506448 DOI: 10.1080/13543776.2024.2332663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) play a pivotal role in the regulation of carbon dioxide , bicarbonate, and hydrogen ions within bacterial cells, ensuring pH homeostasis and facilitating energy production. We conducted a systematic literature search (PubMed, Web of Science, and Google Scholar) to examine the intricate interplay between CAs and bacterial metabolism, revealing the potential of CA inhibitors (CAIs) as innovative therapeutic agents against pathogenic bacteria. AREA COVERED Inhibition of bacterial CAs was explored in various pathogens, emphasizing the CA roles in microbial virulence, survival, and adaptability. Escherichia coli, a valid and convenient model microorganism, was recently used to investigate the effects of acetazolamide (AAZ) on the bacterial life cycle. Furthermore, the effectiveness of CAIs against pathogenic bacteria has been further substantiated for Vancomycin-Resistant Enterococci (VRE) and antibiotic-resistant Neisseria gonorrhoeae strains. EXPERT OPINION CAIs target bacterial metabolic pathways, offering alternatives to conventional therapies. They hold promise against drug-resistant microorganisms such as VRE and N. gonorrhoeae strains. CAIs offer promising avenues for addressing antibiotic resistance and underscore their potential as novel antibacterial agents. Recognizing the central role of CAs in bacterial growth and pathogenicity will pave the way for innovative infection control and treatment strategies possibly also for other antibiotic resistant species.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Li W, Jiao R, Luo S, Liu Z, Song J, Chen Z. Mechanism of action of Coptidis Rhizome in treating periodontitis based on network pharmacology and in vitro validation. BMC Oral Health 2024; 24:530. [PMID: 38704553 PMCID: PMC11069132 DOI: 10.1186/s12903-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.
Collapse
Affiliation(s)
- Wei Li
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
| | - Ruofeng Jiao
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shiyi Luo
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zefei Liu
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550001, China.
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, 550005, China.
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Medical College of Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
14
|
Jiang Q, Geng F, Shen J, Zhu P, Lu Z, Lu F, Zhou L. Blue light-mediated gene expression as a promising strategy to reduce antibiotic resistance in Escherichia coli. Biotechnol J 2024; 19:e2400023. [PMID: 38719589 DOI: 10.1002/biot.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 08/21/2024]
Abstract
The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of β-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.
Collapse
Affiliation(s)
- Qingwei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Geng
- College of Pharmacy, Binzhou Medical University, Yantai, PR China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
15
|
Zhang Y, Xue G, Wang F, Zhang J, Xu L, Yu C. The impact of antibiotic exposure on antibiotic resistance gene dynamics in the gut microbiota of inflammatory bowel disease patients. Front Microbiol 2024; 15:1382332. [PMID: 38694799 PMCID: PMC11061493 DOI: 10.3389/fmicb.2024.1382332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Background While antibiotics are commonly used to treat inflammatory bowel disease (IBD), their widespread application can disturb the gut microbiota and foster the emergence and spread of antibiotic resistance. However, the dynamic changes to the human gut microbiota and direction of resistance gene transmission under antibiotic effects have not been clearly elucidated. Methods Based on the Human Microbiome Project, a total of 90 fecal samples were collected from 30 IBD patients before, during and after antibiotic treatment. Through the analysis workflow of metagenomics, we described the dynamic process of changes in bacterial communities and resistance genes pre-treatment, during and post-treatment. We explored potential consistent relationships between gut microbiota and resistance genes, and established gene transmission networks among species before and after antibiotic use. Results Exposure to antibiotics can induce alterations in the composition of the gut microbiota in IBD patients, particularly a reduction in probiotics, which gradually recovers to a new steady state after cessation of antibiotics. Network analyses revealed intra-phylum transfers of resistance genes, predominantly between taxonomically close organisms. Specific resistance genes showed increased prevalence and inter-species mobility after antibiotic cessation. Conclusion This study demonstrates that antibiotics shape the gut resistome through selective enrichment and promotion of horizontal gene transfer. The findings provide insights into ecological processes governing resistance gene dynamics and dissemination upon antibiotic perturbation of the microbiota. Optimizing antibiotic usage may help limit unintended consequences like increased resistance in gut bacteria during IBD management.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Gaogao Xue
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Fan Wang
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Jing Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
- Beijing YuGen Pharmaceutical Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
16
|
Wilk J, Bajkacz S. Protecting the Last Line of Defense: Analytical Approaches for Sample Preparation and Determination of the Reserve Group of Antibiotics in the Environment. Crit Rev Anal Chem 2024:1-19. [PMID: 38493337 DOI: 10.1080/10408347.2024.2321161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Drug resistance in microorganisms is a serious threat to life and health due to the limited number of antibiotics that show efficacy in treating infections and the difficulty in discovering new compounds with antibacterial activity. To address this issue, the World Health Organization created the AWaRe classification, a tool to support global and national antimicrobial stewardship programs. The AWaRe list categorizes antimicrobials into three groups - Access, Watch, and Reserve - according to their intended use. The Reserve group comprises "last resort" medicines used solely for treating infections caused by bacterial strains that are resistant to other treatments. It is therefore necessary to protect them, not only by using them as prudently as possible in humans and animals, but also by monitoring their subsequent fate. Unmetabolized antibiotics enter the environment through hospital and municipal wastewater or from manure, subsequently contaminating bodies of water and soils, thus contributing to the emergence and spread of antibiotic resistance. This article presents a review of determination methods for the Reserve group of antimicrobials in water, wastewater, and manure. Procedures for extracting and determining these substances in environmental samples are described, showing the limited research available, which is typically on a local level.
Collapse
Affiliation(s)
- Joanna Wilk
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| |
Collapse
|
17
|
Álvarez-Martínez FJ, Díaz-Puertas R, Barrajón-Catalán E, Micol V. Plant-Derived Natural Products for the Treatment of Bacterial Infections. Handb Exp Pharmacol 2024. [PMID: 38418668 DOI: 10.1007/164_2024_706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Bacterial infections are a significant public health concern, and the emergence of antibiotic-resistant bacteria (ARB) has become a major challenge for modern medicine. The overuse and misuse of antibiotics have contributed to the development of ARB, which has led to the need for alternative therapies. Plant-derived natural products (PNPs) have been extensively studied for their potential as alternative therapies for the treatment of bacterial infections. The diverse chemical compounds found in plants have shown significant antibacterial properties, making them a promising source of novel antibacterial agents. The use of PNPs as antibacterial agents is particularly appealing because they offer a relatively safe and cost-effective approach to the treatment of bacterial infections. This chapter aims to provide an overview of the current state of research on PNPs as antibacterial agents. It will cover the mechanisms of action of the main PNPs against bacterial pathogens and discuss their potential to be used as complementary therapies to combat ARB. This chapter will also highlight the most common screening methodologies to discover new PNPs and the challenges and future prospects in the development of these compounds as antibacterial agents.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
- Institute of Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Rocío Díaz-Puertas
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain.
- Department of Pharmacy, Elche University Hospital-FISABIO, Elche, Spain.
| | - Vicente Micol
- Institute for Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
- CIBER, Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (CB12/03/30038), Madrid, Spain
| |
Collapse
|
18
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
19
|
Mancuso G, Trinchera M, Midiri A, Zummo S, Vitale G, Biondo C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:154. [PMID: 38391540 PMCID: PMC10886225 DOI: 10.3390/antibiotics13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Marilena Trinchera
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giulia Vitale
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
20
|
Endale H, Mathewos M, Abdeta D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective-A Review. Infect Drug Resist 2023; 16:7515-7545. [PMID: 38089962 PMCID: PMC10715026 DOI: 10.2147/idr.s428837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 07/04/2024] Open
Abstract
Antimicrobial resistance, referring to microorganisms' capability to subsist and proliferate even when there are antimicrobials is a foremost threat to public health globally. The appearance of antimicrobial resistance can be ascribed to anthropological, animal, and environmental factors. Human-related causes include antimicrobial overuse and misuse in medicine, antibiotic-containing cosmetics and biocides utilization, and inadequate sanitation and hygiene in public settings. Prophylactic and therapeutic antimicrobial misuse and overuse, using antimicrobials as feed additives, microbes resistant to antibiotics and resistance genes in animal excreta, and antimicrobial residue found in animal-origin food and excreta are animals related contributive factors for the antibiotic resistance emergence and spread. Environmental factors including naturally existing resistance genes, improper disposal of unused antimicrobials, contamination from waste in public settings, animal farms, and pharmaceutical industries, and the use of agricultural and sanitation chemicals facilitatet its emergence and spread. Wildlife has a plausible role in the antimicrobial resistance spread. Adopting a one-health approach involving using antimicrobials properly in animals and humans, improving sanitation in public spaces and farms, and implementing coordinated governmental regulations is crucial for combating antimicrobial resistance. Collaborative and cooperative involvement of stakeholders in public, veterinary and ecological health sectors is foremost to circumvent the problem effectively.
Collapse
Affiliation(s)
- Habtamu Endale
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Mesfin Mathewos
- School of Veterinary Medicine, Wachemo University, Wachemo, Ethiopia
| | - Debela Abdeta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
21
|
Gauba A, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1590. [PMID: 37998792 PMCID: PMC10668847 DOI: 10.3390/antibiotics12111590] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Multidrug-resistant Gram-negative bacterial infections are exponentially increasing, posing one of the most urgent global healthcare and economic threats. Due to the lack of new therapies, the World Health Organization classified these bacterial species as priority pathogens in 2017, known as ESKAPE pathogens. This classification emphasizes the need for urgent research and development of novel targeted therapies. The majority of these priority pathogens are Gram-negative species, which possess a structurally dynamic cell envelope enabling them to resist multiple antibiotics, thereby leading to increased mortality rates. Despite 6 years having passed since the WHO classification, the progress in generating new treatment ideas has not been sufficient, and antimicrobial resistance continues to escalate, acting as a global ticking time bomb. Numerous efforts and strategies have been employed to combat the rising levels of antibiotic resistance by targeting specific resistance mechanisms. These mechanisms include antibiotic inactivating/modifying enzymes, outer membrane porin remodelling, enhanced efflux pump action, and alteration of antibiotic target sites. Some strategies have demonstrated clinical promise, such as the utilization of beta-lactamase inhibitors as antibiotic adjuvants, as well as recent advancements in machine-based learning employing artificial intelligence to facilitate the production of novel narrow-spectrum antibiotics. However, further research into an enhanced understanding of the precise mechanisms by which antibiotic resistance occurs, specifically tailored to each bacterial species, could pave the way for exploring narrow-spectrum targeted therapies. This review aims to introduce the key features of Gram-negative bacteria and their current treatment approaches, summarizing the major antibiotic resistance mechanisms with a focus on Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Additionally, potential directions for alternative therapies will be discussed, along with their relative modes of action, providing a future perspective and insight into the discipline of antimicrobial resistance.
Collapse
Affiliation(s)
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
22
|
Stando K, Wilk J, Jakóbik-Kolon A, Felis E, Bajkacz S. Application of UHPLC-MS/MS method to monitor the occurrence of sulfonamides and their transformation products in soil in Silesia, Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112922-112942. [PMID: 37843710 PMCID: PMC10643288 DOI: 10.1007/s11356-023-30146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sulfonamides circulating in the environment lead to disturbances in food chains and local ecosystems, but most importantly contribute to development of resistance genes, which generate problems with multidrug-resistant bacterial infections treatment. In urban areas, sources of sulfonamide distribution in soils have received comparatively less attention in contrast to rural regions, where animal-derived manure, used as a natural fertilizer, is considered the main source. The aim of this study was to determine eight sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfapyridine, sulfathiazole, and sulfisoxazole) in environmental soil samples collected from urbanized regions in Silesian Voivodeship with increased animal activity. These soils were grouped according to the organic carbon content. It was necessary to develop versatile and efficient extraction and determination method to analyze selected sulfonamides in various soil types. The developed LC-MS/MS method for sulfonamides analyzing was validated. The obtained recoveries exceeded 45% for soil with medium organic carbon content and 88% for sample with a very low organic carbon content (arenaceous quartz). The obtained results show the high impact of organic matter on analytes adsorption in soil, which influences recovery. All eight sulfa drugs were determined in environmental samples in the concentration range 1.5-10.5 ng g-1. The transformation products of the analytes were also identified, and 29 transformation products were detected in 24 out of 27 extracts from soil samples.
Collapse
Affiliation(s)
- Klaudia Stando
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Joanna Wilk
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Agata Jakóbik-Kolon
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland
| | - Ewa Felis
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str, 44-100, Gliwice, Poland
- Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2 Str, 44-100, Gliwice, Poland
| | - Sylwia Bajkacz
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, B. Krzywoustego 6 Str, 44-100, Gliwice, Poland.
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str, 44-100, Gliwice, Poland.
| |
Collapse
|
23
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
24
|
Canan-Rochenbach G, Barreiros MAB, Lima AOS, Conti-Lampert AD, Ariente-Neto R, Pimentel-Almeida W, Laçoli R, Corrêa R, Radetski CM, Cotelle S. Are hospital wastewater treatment plants a source of new resistant bacterial strains? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108635-108648. [PMID: 37752395 DOI: 10.1007/s11356-023-30007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
To understand which type of hospital waste may contain the highest amount of antibiotic resistant microorganisms that could be released into the environment, the bacterial strains entering and leaving a hospital wastewater treatment plant (HWTP) were identified and tested for their antibiotic susceptibility. To achieve this goal, samples were collected from three separate sites, inlet and outlet wastewater positions, and sludge generated in a septic tank. After microbiological characterization according to APHA, AWWA, and WEF protocols, the relative susceptibility of the bacterial strains to various antibiotic agents was assessed according to the Clinical and Laboratory Standards Institute guidelines, to determine whether there were higher numbers of resistant bacterial strains in the inlet wastewater sample than in the outlet wastewater and sludge samples. The results showed more antibiotic resistant bacteria in the sludge than in the inlet wastewater, and that the Enterobacteriaceae family was the predominant species in the collected samples. The most antibiotic-resistant families were found to be Streptococcacea and non-Enterobacteriaceae. Some bacterial strains were resistant to all the tested antibiotics. We conclude that the studied HWTP can be considered a source of resistant bacterial strains. It is suggested that outlet water and sludge generated in HWTPs should be monitored, and that efficient treatment to eliminate all bacteria from the different types of hospital waste released into the environment is adopted.
Collapse
Affiliation(s)
- Gisele Canan-Rochenbach
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Marco A B Barreiros
- Universidade Federal do Paraná (UFPR), Campus Palotina, Palotina, PR, 85950-000, Brazil
| | - André O S Lima
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Aline Dal Conti-Lampert
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Curso de Engenharia de Produção, Jandaia do Sul, PR, 86900-000, Brazil
| | - Wendell Pimentel-Almeida
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rogério Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, SC, 88302-202, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-57050, Metz, France
| |
Collapse
|
25
|
Kah Sem NAD, Abd Gani S, Chong CM, Natrah I, Shamsi S. Management and Mitigation of Vibriosis in Aquaculture: Nanoparticles as Promising Alternatives. Int J Mol Sci 2023; 24:12542. [PMID: 37628723 PMCID: PMC10454253 DOI: 10.3390/ijms241612542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Vibriosis is one of the most common diseases in marine aquaculture, caused by bacteria belonging to the genus Vibrio, that has been affecting many species of economically significant aquatic organisms around the world. The prevention of vibriosis in aquaculture is difficult, and the various treatments for vibriosis have their limitations. Therefore, there is an imperative need to find new alternatives. This review is based on the studies on vibriosis, specifically on the various treatments and their limitations, as well as the application of nanoparticles in aquaculture. One of the promising nanoparticles is graphene oxide (GO), which has been used in various applications, particularly in biological applications such as biosensors, drug delivery, and potential treatment for infectious diseases. GO has been shown to have anti-bacterial properties against both Gram-positive and Gram-negative bacteria, but no research has been published that emphasizes its impact on Vibrio spp. The review aims to explore the potential use of GO for treatment against vibriosis.
Collapse
Affiliation(s)
- Nuan Anong Densaad Kah Sem
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Ikhsan Natrah
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| |
Collapse
|
26
|
Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms 2023; 11:1912. [PMID: 37630472 PMCID: PMC10456941 DOI: 10.3390/microorganisms11081912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (S.Z.); (C.B.)
| | | | | | | | | |
Collapse
|
27
|
Messele YE, Werid GM, Petrovski K. Meta-Analysis on the Global Prevalence of Tetracycline Resistance in Escherichia coli Isolated from Beef Cattle. Vet Sci 2023; 10:479. [PMID: 37505883 PMCID: PMC10385540 DOI: 10.3390/vetsci10070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is an emerging global concern, with the widespread use of antimicrobials in One Health contributing significantly to this phenomenon. Among various antimicrobials, tetracyclines are extensively used in the beef cattle industry, potentially contributing to the development of resistance in bacterial populations. This meta-analysis aimed to examine the association between tetracycline use in beef cattle and the development of tetracycline resistance in Escherichia coli isolates. A comprehensive search was conducted using multiple databases to gather relevant observational studies evaluating tetracycline use and tetracycline resistance in Escherichia coli isolates from beef cattle. The rate of tetracycline resistance from each study served as the effect measure and was pooled using a random-effects model, considering possible disparities among studies. The meta-analysis of 14 prospective longitudinal studies resulted in a 0.31 prevalence of tetracycline resistance in Escherichia coli in non-intervention (no exposure), contrasting numerically elevated resistance rates in the intervention (exposed) groups of 0.53 and 0.39 in those receiving tetracyclines via feed or systemically, respectively. Despite the observed numerical differences, no statistically significant differences existed between intervention and non-intervention groups, challenging the conventional belief that antimicrobial use in livestock inherently leads to increased AMR. The findings of this study underscore the need for additional research to fully understand the complex relationship between antimicrobial use and AMR development. A considerable degree of heterogeneity across studies, potentially driven by variations in study design and diverse presentation of results, indicates the intricate and complex nature of AMR development. Further research with standardized methodologies might help elucidate the relationship between tetracycline use and resistance in Escherichia coli isolated from beef cattle.
Collapse
Affiliation(s)
- Yohannes E Messele
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Kiro Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
28
|
Zinno P, Perozzi G, Devirgiliis C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023; 11:1696. [PMID: 37512869 PMCID: PMC10383130 DOI: 10.3390/microorganisms11071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.
Collapse
Affiliation(s)
- Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
29
|
Raeisi H, Noori M, Azimirad M, Mohebbi SR, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Emerging applications of phage therapy and fecal virome transplantation for treatment of Clostridioides difficile infection: challenges and perspectives. Gut Pathog 2023; 15:21. [PMID: 37161478 PMCID: PMC10169144 DOI: 10.1186/s13099-023-00550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile, which causes life-threatening diarrheal disease, is considered an urgent threat to healthcare setting worldwide. The current standards of care solely rely on conventional antibiotic treatment, however, there is a risk of promoting recurrent C. difficile infection (rCDI) because of the emergence of antibiotic-resistant strains. Globally, the alarming spread of antibiotic-resistant strains of C. difficile has resulted in a quest for alternative therapeutics. The use of fecal microbiota transplantation (FMT), which involves direct infusion of fecal suspension from a healthy donor into a diseased recipient, has been approved as a highly efficient therapeutic option for patients with rCDI. Bacteriophages or phages are a group of viruses that can infect and destroy bacterial hosts, and are recognized as the dominant viral component of the human gut microbiome. Accumulating data has demonstrated that phages play a vital role in microbial balance of the human gut microbiome. Recently, phage therapy and fecal virome transplantation (FVT) have been introduced as promising alternatives for the treatment of C. difficile -related infections, in particular drug-resistant CDI. Herein, we review the latest updates on C. difficile- specific phages, and phage-mediated treatments, and highlight the current and future prospects of phage therapy in the management of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ramatla T, Tawana M, Lekota KE, Thekisoe O. Antimicrobial resistance genes of Escherichia coli, a bacterium of "One Health" importance in South Africa: Systematic review and meta-analysis. AIMS Microbiol 2023; 9:75-89. [PMID: 36891533 PMCID: PMC9988412 DOI: 10.3934/microbiol.2023005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This is a systematic review and meta-analysis that evaluated the prevalence of Escherichia coli antibiotic-resistant genes (ARGs) in animals, humans, and the environment in South Africa. This study followed Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to search and use literature published between 1 January 2000 to 12 December 2021, on the prevalence of South African E. coli isolates' ARGs. Articles were downloaded from African Journals Online, PubMed, ScienceDirect, Scopus, and Google Scholar search engines. A random effects meta-analysis was used to estimate the antibiotic-resistant genes of E. coli in animals, humans, and the environment. Out of 10764 published articles, only 23 studies met the inclusion criteria. The obtained results indicated that the pooled prevalence estimates (PPE) of E. coli ARGs was 36.3%, 34.4%, 32.9%, and 28.8% for blaTEM-M-1 , ampC, tetA, and bla TEM, respectively. Eight ARGs (blaCTX-M , blaCTX-M-1 , blaTEM , tetA, tetB, sul1, sulII, and aadA) were detected in humans, animals and the environmental samples. Human E. coli isolate samples harboured 38% of the ARGs. Analyzed data from this study highlights the occurrence of ARGs in E. coli isolates from animals, humans, and environmental samples in South Africa. Therefore, there is a necessity to develop a comprehensive "One Health" strategy to assess antibiotics use in order to understand the causes and dynamics of antibiotic resistance development, as such information will enable the formulation of intervention strategies to stop the spread of ARGs in the future.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Kgaugelo E Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
31
|
Fursova NK, Kislichkina AA, Khokhlova OE. Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria. Microorganisms 2022; 10:microorganisms10081678. [PMID: 36014095 PMCID: PMC9416584 DOI: 10.3390/microorganisms10081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Gram-negative bacteria are prevalent pathogens associated with hospital-acquired infections (HAI) that are a major challenge for patient safety, especially in intensive care units [...].
Collapse
Affiliation(s)
- Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
- Correspondence:
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| | - Olga E. Khokhlova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia
| |
Collapse
|