1
|
Yu H, Saif MS, Hasan M, Zafar A, Zhao X, Waqas M, Tariq T, Xue H, Hussain R. Designing a Silymarin Nanopercolating System Using CME@ZIF-8: An Approach to Hepatic Injuries. ACS OMEGA 2023; 8:48535-48548. [PMID: 38144097 PMCID: PMC10734040 DOI: 10.1021/acsomega.3c08494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.
Collapse
Affiliation(s)
- Hui Yu
- College
of Science, Beihua University, Jilin 132013, P. R. China
| | - Muhammad Saqib Saif
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- School
of Engineering, Royal Melbourne Institute
of Technology (RMIT) University, Melbourne 3001, Australia
| | - Xi Zhao
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Muhammad Waqas
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Riaz Hussain
- Faculty
of Veterinary and Animal Sciences, Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
2
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Abdel-Razek MAM, Abdelwahab MF, Abdelmohsen UR, Hamed ANE. Pharmacological and phytochemical biodiversity of Corchorus olitorius. RSC Adv 2022; 12:35103-35114. [PMID: 36540263 PMCID: PMC9727694 DOI: 10.1039/d2ra07406k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 11/20/2023] Open
Abstract
Corchorus olitorius L. is a nutritious green leafy vegetable that is eaten as a viscous soup in African and Middle Eastern cultures. The purpose of this review is to highlight the nutritional and nutraceutical potential of this plant. The leaves of C. olitorius are rich providers of minerals as calcium and iron in addition to vitamins B1, B2, folic acid C and E. The leaves contain numerous compounds having several biological effects including antidiabetic and antioxidant properties. Besides, the leaves comprise other phytochemicals such as cardiac glycosides, terpenes, flavonoids, fatty acids, hydrocarbons and phenolics. Various extracts of C. olitorius were shown to exhibit antioxidant, anti-inflammatory, hepatoprotective, antihyperlipidemic, immunostimulant, antitumor, antimicrobial, antidiabetic, analgesic, wound-healing properties and cardioprotective activities.
Collapse
Affiliation(s)
- Marwa A M Abdel-Razek
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone 61111 New Minia City Egypt
| | - Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|