1
|
Bal-Öztürk A, Torkay G, İdil N, Akar RO, Özbaş Z, Özkahraman B. Propolis-loaded photocurable methacrylated pullulan films: Evaluation of mechanical, antibacterial, biocompatibility, wound healing and pro-angiogenic abilities. Int J Biol Macromol 2024; 282:137071. [PMID: 39486734 DOI: 10.1016/j.ijbiomac.2024.137071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.55 ± 0.15 MPa), tensile strength (2.48 ± 0.12 MPa), and elongation at break (848 ± 111 %). Additionally, the incorporation of PRO into wound dressing films has demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and it has also improved the release profile. The obtained films have scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The wound dressing films were not cytotoxic to NIH/3T3 cells, a fibroblast cell line, according to the cytotoxicity assay. The in vitro scratch test showed that PRO incorporated films induced cell migration, suggesting that they have the potential to close wounds and promote healing. According to the image analysis conducted following the in ovo chorioallantoic membrane (CAM) test, PRO inclusion boosted different angiogenesis parameters stemming from the films. Clear evidence has been found that PRO loaded into high mechanical performance PUL based films can be suitable for advanced wound dressing applications.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Istinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 Istanbul, Turkey; Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Gülşah Torkay
- Istinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010 Istanbul, Turkey; Istinye University, Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), 34010 Istanbul, Turkey
| | - Neslihan İdil
- Faculty of Science, Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Remzi Okan Akar
- Medical School of Istinye University, Department of Clinical Biochemistry, 34010 Istanbul, Turkey
| | - Zehra Özbaş
- Çankırı Karatekin University, Faculty of Engineering, Chemical Engineering Department, 18100 Çankırı, Turkey
| | - Bengi Özkahraman
- Hitit University, Faculty of Engineering, Polymer Materials Engineering Department, 19030 Corum, Turkey.
| |
Collapse
|
2
|
Konsila K, Assavalapsakul W, Phuwapraisirisan P, Chanchao C. Anti- Malassezia globosa (MYA-4889, ATCC) activity of Thai propolis from the stingless bee Geniotrigona thoracica. Heliyon 2024; 10:e29421. [PMID: 38660263 PMCID: PMC11041017 DOI: 10.1016/j.heliyon.2024.e29421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Malassezia globosa, a lipophilic pathogen, is known to be involved in various chronic skin diseases. Unfortunately, the available treatments have unwanted side effects and microbial drug resistance is evolving. As the antimicrobial activity of propolis is outstanding, this study aimed to examine the potential of propolis from the stingless bee Geniotrigona thoracica against the yeast. Anti-M. globosa growth activity was ascertained in agar well diffusion and broth microdilution assays and the inhibitory concentration value at 50 % (IC50) was determined. Since the yeast cannot synthesize its own fatty acids, extracellular lipase is important for its survival. Here, anti-M. globosa extracellular lipase activity was additionally investigated by colorimetric and agar-based methods. Compared to the crude hexane and crude dichloromethane extracts, the crude methanol partitioned extract (CMPE) exhibited the best anti-M. globosa growth activity with an IC50 of 1.22 mg/mL. After CMPE was further enriched by silica gel column chromatography, fraction CMPE1 (IC50 of 0.98 mM or 184.93 μg/mL) presented the highest activity and was later identified as methyl gallate (MG) by nuclear magnetic resonance analysis. Subsequently, MG was successfully synthesized and shown to have a similar activity, and a minimal fungicidal concentration of 43.44 mM or 8.00 mg/mL. However, lipase assay analysis suggested that extracellular lipase might not be the main target mechanism of MG. This is the first report of MG as a new anti-Malassezia compound. It could be a good candidate for further developing alternative therapeutic agents.
Collapse
Affiliation(s)
- Kawisara Konsila
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Preecha Phuwapraisirisan
- Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Necip A, Demirtas I, Tayhan SE, Işık M, Bilgin S, Turan İF, İpek Y, Beydemir Ş. Isolation of phenolic compounds from eco-friendly white bee propolis: Antioxidant, wound-healing, and anti-Alzheimer effects. Food Sci Nutr 2024; 12:1928-1939. [PMID: 38455224 PMCID: PMC10916560 DOI: 10.1002/fsn3.3888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024] Open
Abstract
This study presents the first findings regarding extraction, isolation, enzyme inhibition, and antioxidant activity. The oral mucosal wound-healing process was investigated using propolis water extract (PWE) incubation with gingival fibroblast cells and concluded that propolis was effective on the oral mucosal wound-healing pattern compared to untreated controls. Additionally, phenolic compounds (fraxetin, apigenin, galangin, pinobanksin, chrysin, etc.) were isolated from propolis, and their chemical structures were elucidated using comprehensive spectroscopic methods. The antioxidant and anti-Alzheimer potential activities of PWE and some isolated compounds were screened and revealing their inhibitory effects on acetylcholinesterase (AChE) with IC50 values ranging from 0.45 ± 0.01 to 1.15 ± 0.03 mM, as well as remarkable free-radical scavenging and metal reduction capacities. The results suggest that these compounds and PWE can be used as therapeutic agents due to their antioxidant properties and inhibitory potential on AChE. It can also be used for therapeutic purposes since its wound-healing effect is promising.
Collapse
Affiliation(s)
- Adem Necip
- Department of Pharmacy Services, Vocational School of Health ServicesHarran UniversityŞanlıurfaTürkiye
| | - Ibrahim Demirtas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyOndokuz Mayıs UniversitySamsunTürkiye
| | - Seçil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyTokat Gaziosmanpasa UniversityTokatTürkiye
| | - Mesut Işık
- Department of Bioengineering, Faculty of EngineeringBilecik Seyh Edebali UniversityBilecikTürkiye
| | - Sema Bilgin
- Department of Medical Laboratory Techniques, Vocational School of Health ServicesGaziosmanpasa UniversityTokatTürkiye
| | - İsmail Furkan Turan
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyTokat Gaziosmanpasa UniversityTokatTürkiye
| | - Yaşar İpek
- Plant Research Laboratory‐B, Department of Chemistry, Faculty of ScienceCankiri Karatekin UniversityCankiriTürkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehirTürkiye
| |
Collapse
|
4
|
Zhao B, Xu J, Wang Y, Li Y, Li Y, Zhang X, Zhang S, Yu L, Yuan Q. Periplaneta americana extract promotes hard palate mucosal wound healing via the PI3K/AKT signaling pathway in male mice. Arch Oral Biol 2024; 158:105856. [PMID: 38056227 DOI: 10.1016/j.archoralbio.2023.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of Periplaneta americana extract, a traditional Chinese medicine, on hard palate mucosal wound healing and explore the underlying mechanisms. DESIGN Hard palate mucosal wound model was established and the effects of Periplaneta americana extract on hard palate mucosal wound healing were investigated by stereomicroscopy observation and histological evaluation in vivo. Human oral keratinocytes and human gingival fibroblasts, which play key roles in hard palate mucosal wound healing, were selected as the main research cells in vitro. The effects of Periplaneta americana extract on cell proliferation, migration, and collagen formation were determined by cell counting kit-8 (CCK-8) assay, Transwell assay, and Van Gieson staining. The underlying mechanism was revealed by RNA sequencing, and results were verified by western blot assay. RESULTS Stereomicroscopy observation and H&E staining confirmed that Periplaneta americana extract accelerated the healing rate of hard palate mucosal wound (p < 0.001) in vivo. Transwell assay and Van Gieson staining assay showed that Periplaneta americana extract promoted the migration and collagen formation of human oral keratinocytes (p < 0.001) and human gingival fibroblasts (p < 0.001) in vitro. Mechanistically, RNA sequencing and western blot assay demonstrated that Periplaneta americana extract promoted hard palate mucosal wound healing via PI3K/AKT signaling, and the beneficial effects of Periplaneta americana extract were abrogated by the PI3K inhibitor LY294002. CONCLUSIONS Periplaneta americana extract shows promising effects for the promotion of hard palate mucosal wound healing and may be a novel candidate for clinical translation.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|