1
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
2
|
Song Q, Cui Q, Sun S, Wang Y, Yuan Y, Zhang L. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol 2024; 61:10271-10287. [PMID: 38713439 DOI: 10.1007/s12035-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China.
| |
Collapse
|
3
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
4
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
5
|
Du J, Dong Y, Song J, Shui H, Xiao C, Hu Y, Zhou S, Wang S. BMSC‑derived exosome‑mediated miR‑25‑3p delivery protects against myocardial ischemia/reperfusion injury by constraining M1‑like macrophage polarization. Mol Med Rep 2024; 30:142. [PMID: 38904206 PMCID: PMC11208993 DOI: 10.3892/mmr.2024.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the management of myocardial ischemic disease. Extensive evidence suggests that the macrophage‑mediated inflammatory response may play a vital role in MIRI. Mesenchymal stem cells and, in particular, exosomes derived from these cells, may be key mediators of myocardial injury and repair. However, whether exosomes protect the heart by regulating the polarization of macrophages and the exact mechanisms involved are poorly understood. The present study aimed to determine whether exosomes secreted by bone marrow mesenchymal stem cells (BMSC‑Exo) harboring miR‑25‑3p can alter the phenotype of macrophages by affecting the JAK2/STAT3 signaling pathway, which reduces the inflammatory response and protects against MIRI. An in vivo MIRI model was established in rats by ligating the anterior descending region of the left coronary artery for 30 min followed by reperfusion for 120 min, and BMSC‑Exo carrying miR‑25‑3p (BMSC‑Exo‑25‑3p) were administered through tail vein injection. A hypoxia‑reoxygenation model of H9C2 cells was established, and the cells were cocultured with BMSC‑Exo‑25‑3p in vitro. The results of the present study demonstrated that BMSC‑Exo or BMSC‑Exo‑25‑3p could be taken up by cardiomyocytes in vivo and H9C2 cells in vitro. BMSC‑Exo‑25‑3p demonstrated powerful cardioprotective effects by decreasing the cardiac infarct size, reducing the incidence of malignant arrhythmias and attenuating myocardial enzyme activity, as indicated by lactate dehydrogenase and creatine kinase levels. It induced M1‑like macrophage polarization after myocardial ischemia/reperfusion (I/R), as evidenced by the increase in iNOS expression through immunofluorescence staining and upregulation of proinflammatory cytokines through RT‑qPCR, such as interleukin‑1β (IL‑1β) and interleukin‑6 (IL‑6). As hypothesized, BMSC‑Exo‑25‑3p inhibited M1‑like macrophage polarization and proinflammatory cytokine expression while promoting M2‑like macrophage polarization. Mechanistically, the JAK2/STAT3 signaling pathway was activated after I/R in vivo and in LPS‑stimulated macrophages in vitro, and BMSC‑Exo‑25‑3p pretreatment inhibited this activation. The results of the present study indicate that the attenuation of MIRI by BMSC‑Exo‑25‑3p may be related to JAK2/STAT3 signaling pathway inactivation and subsequent inhibition of M1‑like macrophage polarization.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Jingjing Song
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shiyao Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shanshan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
6
|
Liu FS, Huang HL, Deng LX, Zhang QS, Wang XB, Li J, Liu FB. Identification and bioinformatics analysis of genes associated with pyroptosis in spinal cord injury of rat and mouse. Sci Rep 2024; 14:14023. [PMID: 38890348 PMCID: PMC11189416 DOI: 10.1038/s41598-024-64843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hai-Long Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin-Xia Deng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Zhong H, Li M, Wu H, Ying H, Zhong M, Huang M. Silencing DDX3 Attenuates Interleukin-1β-Induced Intervertebral Disc Degeneration Through Inhibiting Pyroptosis. Inflammation 2024:10.1007/s10753-024-02042-1. [PMID: 38735906 DOI: 10.1007/s10753-024-02042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common disorder associated with chronic inflammation and cell death. In this study, an IVDD rat model was created through Interleukin-1β (IL-1β) injection. The degeneration of intervertebral disc tissues was assessed using magnetic resonance imaging (MRI), followed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining. RNA sequencing was performed to identify differentially expressed genes (DEGs) between the IVDD model and control rats. The expression levels of DEGs (DEAD-box polypeptide 3 (DDX3), lysine-specific demethylase 5D (KDM5D), interferon-induced gene-1 (IFIT1), ribosomal protein S10 (RPS10), tenomodulin (TNMD), and pentraxin 3 (PTX3)) were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The regulatory effect of DDX3 on pyroptosis in IL-1β-treated nucleus pulpous (NP) cells was assessed after transfection with siRNA of DDX3. A total of 601 DEGs were identified from the IVDD model rat, and were abundant in extracellular matrix (ECM) organization, ECM-receptor interaction, and inflammatory pathways, including the PI3K-Akt, TNF, and AMPK signaling pathways. DDX3, KDM5D, and IFIT1 levels were notably elevated, whereas RPS10, TNMD, and PTX3 levels were decreased in the IL-1β-induced IVDD rat model. Moreover, silencing DDX3 promoted cell proliferation and abolished IL-1β-induced cell apoptosis and pyroptosis. This study revealed the role of DDX3 in IVDD pyroptosis, providing potential target for IVDD management.
Collapse
Affiliation(s)
- Hongfa Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China.
| | - Mingheng Li
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Haijian Wu
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Hui Ying
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mingliang Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mouzhang Huang
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
8
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
9
|
Zhang Z, Zhu Z, Liu D, Wang X, Liu X, Mi Z, Fu J, Fan H. Machine learning and experiments revealed a novel pyroptosis-based classification linked to diagnosis and immune landscape in spinal cord injury. Heliyon 2024; 10:e24974. [PMID: 38314301 PMCID: PMC10837564 DOI: 10.1016/j.heliyon.2024.e24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Background Rising evidence indicates the development of pyroptosis in the initiation and pathogenesis of spinal cord injury (SCI). However, the associated effects of pyroptosis-related genes (PRGs) in SCI are unclear. Methods We obtained the gene expression profiles of SCI and normal samples in the GEO. Database The R package limma screened for differentially expressed (DE) PRGs and performed functional enrichment analysis. Mechanical learning and PPI analysis helped filter essential PRGs to diagnose SCI. Peripheral blood was collected for validation from ten SCI patients and eight healthy individuals. The association of essential PRGs with immune infiltration was evaluated, and pyroptosis subtypes were recognized in SCI patients by unsupervised cluster analysis. Besides, a SCI model was built for in vivo validation of essential PRGs. Result We identified 25 DE-PRGs between SCI and normal controls. Functional enrichment analysis revealed the principal involvement of DE-PRGs in pyroptosis, inflammasome complex, interleukin-1 beta production, etc. Subsequently, three essential PRGs were identified and validated, showing excellent diagnostic efficacy and significant correlation with immune cell infiltration. Additionally, we developed diagnostic nomograms to predict the occurrence of SCI. Two pyroptosis subtypes exhibited distinct biological functions and immune landscapes among SCI patients. Finally, the expression of these essential PRGswas verified in vivo. Conclusion The current study described the vital effects of pyroptosis-related genes in SCI, providing a novel direction for effective assessment and management of SCI.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhijie Zhu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Dong Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuankang Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xincheng Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Fu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbin Fan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Yang Z, Sheng M, Wang M, Cheng L, Sun X. PKR inhibitor protects spinal cord injury through mitigating endoplasmic reticulum stress and pyroptosis. Neurochem Int 2024; 172:105632. [PMID: 37866691 DOI: 10.1016/j.neuint.2023.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES The goal of the study was to reveal the regulatory role of protein kinase R (PKR) in spinal cord injury (SCI), a devasting disorder of the neurological system, and to elucidate its potential mechanism. METHODS The established animal and cellular models of SCI were treated by the PKR inhibitor C12. Histological injury and tissue apoptosis were assessed via H&E staining and TUNEL assays, respectively. Basso-Beattie-Bresnahan (BBB) scoring as well as forelimb grip strength tests were employed to evaluate functional recovery. The production of ROS and cytokines were appraised via their related commercial kits. Western blot and immunofluorescence assay were used to examine protein expression. CCK-8 method was used to assay cell activity. Co-immunoprecipitation assay was conducted to measure the affinity of PKR with STAT1. RESULTS PKR expression was enhanced following SCI, and the PKR inhibitor C16 mitigated histological injury, cell apoptosis and water content in spinal cord, and improved function recovery following SCI. Meanwhile, C16 attenuated ER stress, pyroptosis, NLRP3 inflammasome and inflammation in mice with SCI and in BV-2 cells challenged with LPS. Additionally, PKR interacted with STAT1 in BV-2 cells, and STAT1 knockdown inhibited ER stress, pyroptosis and inflammation in BV-2 cells challenged with LPS. The protective role of C16 in BV-2 cells exposed to LPS were partly abolished by STAT1 overexpression. CONCLUSION PKR inhibition might be a prospective effective approach to attenuating SCI and accelerating function recovery through modulating microglial pyroptosis and ER stress.
Collapse
Affiliation(s)
- Ze Yang
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Ming Sheng
- Joint Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Meng Wang
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Long Cheng
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xin Sun
- Spine Minimally Invasive Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
11
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
12
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
13
|
Cheng DW, Yue YF, Chen CX, Hu YD, Tang Q, Xie M, Liu L, Li D, Zhu HL, Cheng ML. Emodin alleviates arthritis pain through reducing spinal inflammation and oxidative stress. Mol Pain 2022; 18:17448069221146398. [PMID: 36474308 PMCID: PMC9772972 DOI: 10.1177/17448069221146398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic pain is the predominant problem for rheumatoid arthritis patients, and negatively affects quality of life. Arthritis pain management remains largely inadequate, and developing new treatment strategies are urgently needed. Spinal inflammation and oxidative stress contribute to arthritis pain and represent ideal targets for the treatment of arthritis pain. In the present study, collagen-induced arthritis (CIA) mouse model was established by intradermally injection of type II collagen (CII) in complete Freund's adjuvant (CFA) solution, and exhibited as paw and ankle swelling, pain hypersensitivity and motor disability. In spinal cord, CIA inducement triggered spinal inflammatory reaction presenting with inflammatory cells infiltration, increased Interleukin-1β (IL-1β) expression, and up-regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved caspase-1 levels, elevated spinal oxidative level presenting as decreased nuclear factor E2-related factor 2 (Nrf2) expression and Superoxide dismutase (SOD) activity. To explore potential therapeutic options for arthritis pain, emodin was intraperitoneally injected for 3 days on CIA mice. Emodin treatment statistically elevated mechanical pain sensitivity, suppressed spontaneous pain, recovered motor coordination, decreased spinal inflammation score and IL-1β expression, increased spinal Nrf2 expression and SOD activity. Further, AutoDock data showed that emodin bind to Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) through two electrovalent bonds. And emodin treatment increased the phosphorylated AMPK at threonine 172. In summary, emodin treatment activates AMPK, suppresses NLRP3 inflammasome response, elevates antioxidant response, inhibits spinal inflammatory reaction and alleviates arthritis pain.
Collapse
Affiliation(s)
- Ding-Wen Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuan-Fen Yue
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Chun-Xi Chen
- Xishui Affiliated Hospital of Hubei University of Science and Technology, Huanggang, China
| | - Yin-Di Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qiong Tang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Xie
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dai Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China,Hai-Li Zhu, Xianning Medical College, Hubei University of Science and Technology, No. 88 Xianning Road, Xianning, Hubei 437100, China.
| | - Meng-Lin Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China,Meng-Lin Cheng, Xianning Medical College, Hubei University of Science and Technology, No. 88 Xianning Road, Xianning, Hubei 437100, China.
| |
Collapse
|
14
|
Wang S, Wang H, Feng C, Li C, Li Z, He J, Tu C. The regulatory role and therapeutic application of pyroptosis in musculoskeletal diseases. Cell Death Discov 2022; 8:492. [PMID: 36522335 PMCID: PMC9755533 DOI: 10.1038/s41420-022-01282-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis is a controlled form of inflammatory cell death characterized by inflammasome activation, pore formation, and cell lysis. According to different caspases, pyroptosis can be divided into canonical, non-canonical, and other pathways. The role of pyroptosis in disease development has been paid more attention in recent years. The trigger factors of pyroptosis are often related to oxidative stress and proinflammatory substances, which coincide with the pathological mechanism of some diseases. Pyroptosis directly leads to cell lysis and death, and the release of cytosolic components and proinflammatory cytokines affects cell activity and amplifies the inflammatory response. All the above are involved in a series of basic pathological processes, such as matrix degradation, fibrosis, and angiogenesis. Since these pathological changes are also common in musculoskeletal diseases (MSDs), emerging studies have focused on the correlations between pyroptosis and MSDs in recent years. In this review, we first summarized the molecular mechanism of pyroptosis and extensively discussed the differences and crosstalk between pyroptosis, apoptosis, and necrosis. Next, we elaborated on the role of pyroptosis in some MSDs, including osteoarthritis, rheumatoid arthritis, osteoporosis, gout arthritis, ankylosing spondylitis, intervertebral disc degeneration, and several muscle disorders. The regulation of pyroptosis could offer potential therapeutic targets in MSDs treatment. Herein, the existing drugs and therapeutic strategies that directly or indirectly target pyroptosis pathway components have been discussed in order to shed light on the novel treatment for MSDs.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|