1
|
Park J, An G, Lee H, Park S, Ham J, Bazer FW, Song G, Lim W. Beta-cyfluthrin impairs implantation process by inducing mitochondrial defects and changes in reactive oxygen species-mediated signaling pathways in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173097. [PMID: 38729356 DOI: 10.1016/j.scitotenv.2024.173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Pyrethroid insecticides, such as beta-cyfluthrin, are used extensively globally, including in households and agriculture, and have been detected in the milk and urine of humans and cattle. Beta-cyfluthrin exhibits toxic effects, including neurotoxicity and male reproductive toxicity; however, few studies have investigated female reproductive toxicity despite its wide environmental distribution. The present study investigates effects of beta-cyfluthrin on implantation in porcine cells (pTr from the trophectoderm and pLE from the endometrial luminal epithelium). To identify the various physiological changes induced by beta-cyfluthrin, such as apoptosis and lipid peroxidation, flow cytometry analysis and immunofluorescence were performed with various reagents. In addition, the expression of genes and proteins associated with intracellular changes was confirmed using qRT-PCR and western blotting. Beta-cyfluthrin induced cell-cycle arrest and altered intracellular calcium flux. It also disrupted the mitochondrial function and promoted reactive oxygen species (ROS) production, leading to lipid peroxidation. Moreover, ROS induced by beta-cyfluthrin altered mitogen-activated protein kinase (MAPK) pathways and decreased cell migration capability. The expression levels of genes that are significant during early pregnancy were altered by beta-cyfluthrin in both cell lines. The changes resulted in apoptosis and diminished cell proliferation of pTr and pLE. Collectively, the results imply that beta-cyfluthrin disrupts the implantation process by affecting the physiology of the trophectoderm and endometrial luminal epithelial cells. The present study is the first to reveal the cellular mechanisms of beta-cyfluthrin on the female reproductive system and highlights the need for further in-depth research into its hazards.
Collapse
Affiliation(s)
- Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Nadalin P, Kim JK, Park SU. Recent insights into luteolin and its biological and pharmacological activities. EXCLI JOURNAL 2024; 23:787-794. [PMID: 39165588 PMCID: PMC11333740 DOI: 10.17179/excli2024-7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Priscilla Nadalin
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Department of Smart Agricultural Systems, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Xie Y, Zhao J, Li X, Sun J, Yang H. Effects of Cyfluthrin Exposure on Neurobehaviour, Hippocampal Tissue and Synaptic Plasticity in Wistar Rats. TOXICS 2023; 11:999. [PMID: 38133400 PMCID: PMC10748044 DOI: 10.3390/toxics11120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
This experiment was conducted to study the effects of Cyfluthrin (Cy) exposure on neurobehaviour, hippocampal tissue and synaptic plasticity in Wistar rats. First, it was found that high-dose Cy exposure could cause nerve injury, resulting in symptoms such as deficits in learning and memory ability, spatial exploration and autonomic motor function. Moreover, it was found that medium- and high-dose Cy exposure could cause an abnormal release of the neurotransmitter Glu. Second, brain tissue pathology showed that the middle and high doses of Cy caused tissue deformation, reduced the number of hippocampal puramidal cells, caused a disorder of these cells, decreased the number of Nissl bodies, and caused pyknosis of the hippocampal cell nuclear membrane and serious damage to organelles, indicating that exposure to these doses of Cy may cause hippocampal tissue damage in rats. Third, as the exposure dose increased, morphological changes in hippocampal synapses, including blurred synaptic spaces, a decreased number of synaptic vesicles and a decreased number of synapses, became more obvious. Moreover, the expression levels of the key synaptic proteins PSD-95 and SYP also decreased in a dose-dependent manner, indicating obvious synaptic damage. Finally, the study found that medium and high doses of Cy could upregulate the expression of A2AR in the hippocampus and that the expression levels of inflammatory factors and apoptosis-related proteins increased in a dose-dependent manner. Moreover, the expression of A2AR mRNA was correlated with neurobehavioural indicators and the levels of inflammatory factors, synaptic plasticity-related factors and apoptosis-related factors, suggesting that Cy may cause nerve damage in rats and that this effect is closely related to A2AR.
Collapse
Affiliation(s)
- Yongxin Xie
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xiaoyu Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Huifang Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| |
Collapse
|