1
|
Yang T, Shi D, Lin Q, Shen H, Tan H, Liu Y, Shi H, Cheng D. Synthesis, Screening, and Evaluation of Theranostic Molecular CPCR4-Based Probe Targeting CXCR4. Mol Pharm 2024; 21:2415-2424. [PMID: 38606663 DOI: 10.1021/acs.molpharmaceut.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemokines and chemokine receptors are indispensable to play a key role in the development of malignant tumors. As one of the most widely expressed chemokine receptors, chemokine (C-X-C motif) receptor 4 (CXCR4) has been a popular research focus. In most tumors, CXCR4 expression is significantly upregulated. Moreover, integrated nuclide diagnosis and therapy targeting CXCR4 show great potential. [68Ga]Ga-pentixafor, a radioligand targeting CXCR4, exhibits a strong affinity for CXCR4 both in vivo and in vitro. However, [177Lu]Lu-pentixather, the therapeutic companion of [68Ga]Ga-pentixafor, requires significant refinement to mitigate its pronounced hepatic biodistribution. The objective of this study was to synthesize theranostic molecular tracers with superior CXCR4 targeting functions. The Daudi cell line, which highly expressed CXCR4, and the MM.1S cell line, which weakly expressed CXCR4, were used in this study. Based on the pharmacophore cyclo (-d-Tyr-n-me-d-Orn-l-Arg-L-2-NAL-Gly-) (CPCR4) of pentixafor, six tracers were synthesized: [124I]I-1 ([124I]I-CPCR4), [99mTc]Tc-2 ([99mTc]Tc-HYNIC-CPCR4), [124I]I-3 ([124I]I-pentixafor), [18F]AlF-4 ([18F]AlF-NETA-CPCR4), [99mTc]Tc-5 ([99mTc]Tc-MAG3-CPCR4) and [124I]I-6 ([124I]I-pentixafor-Ga) and their radiochemical purities were all higher than 95%. After positron emission tomography (PET)/single-photon emission computed tomography (SPECT) imaging, the [124I]I-6 group exhibited the best target-nontarget ratio. At the same time, comparing the [68Ga]Ga-pentixafor group with the [124I]I-6 group, we found that the [124I]I-6 group had a better target-nontarget ratio and lower uptake in nontarget organs. Therefore, compound 6 was selected for therapeutic radionuclide (131I) labeling, and the tumor-bearing animal models were treated with [131I]I-6. The volume of the tumor site was significantly reduced in the treatment group compared with the control group, and no significant side effects were found. [124I]I-6 and [131I]I-6 showed excellent affinity for targeting CXCR4, and they showed great potential for the integrated diagnosis and treatment of tumors with high CXCR4 expression.
Collapse
Affiliation(s)
- Tingting Yang
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dai Shi
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Lin
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Shen
- Department of Applied Chemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hui Tan
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuxia Liu
- Department of Applied Chemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongcheng Shi
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dengfeng Cheng
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Shi D, Fu W, Tan H, Lin Q, Shi H, Cheng D. Preclinical Evaluation of 99mTc-MAG 3-5-Fab Targeting TREM2 in Lung Cancer Mouse Models: A Comparison with 99mTc-MAG 3-5-F(ab') 2. Mol Pharm 2024; 21:303-312. [PMID: 38109713 DOI: 10.1021/acs.molpharmaceut.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2), which is expressed on the surface of tumor-associated macrophages (TAMs), has been found to play a major role in the diagnosis and treatment of tumors. TREM2 expression is significantly upregulated in tumor tissues, and therefore, targeting TREM2 for tumor imaging may be of value. Previously, we performed TREM2 targeting imaging by using 68Ga-NOTA-COG1410 or a 124I-labeled monoclonal antibody (mAb) and F(ab')2 in mouse models of colon and gastric tumors. However, some of the shortcomings of these probes (i.e., the high uptake of 68Ga-NOTA-COG1410 in the liver, the difficulty of obtaining iodine-124, and the long half-life of iodine-124) have hindered their clinical use. Herein, we sought to synthesize novel molecular probes targeting TREM2 that are more conducive to clinical translation, eliminating the interference of isotope availability and in vivo probe biodistribution issues. Therefore, we established A549 cell lines with negative human TREM2 (hTREM2) expression (GFP tag; hTREM2- A549) or upregulated hTREM2 expression (GFP tag; hTREM2+ A549) using lentiviral transfection and confirmed these with Western blotting and immunocytochemistry. We then prepared a mouse anti-human TREM2 (5-mAb) by immunizing with the hTREM2 antigen. The antibody fragments 5-F(ab')2 and 5-Fab were prepared from 5-mAb, and 99mTc-MAG3-5-F(ab')2 and 99mTc-MAG3-5-Fab were then synthesized with excellent stability and specificity. 99mTc-MAG3-5-F(ab')2 had a slightly higher in vitro affinity than 99mTc-MAG3-5-Fab (Kd = 3.32 ± 0.05 nmol versus 4.62 ± 0.85 nmol). 99mTc-MAG3-5-F(ab')2 and 99mTc-MAG3-5-Fab both showed excellent specificity: after adding a 100-fold precursor, the two probes binding to the cells were almost blocked. In vivo pharmacokinetics showed that the distribution and elimination half-lives of 99mTc-MAG3-5-Fab (T1/2α = 1.25 ± 0.30 min and T1/2β = 21.98 ± 2.80 min, respectively) were significantly reduced compared to those of 99mTc-MAG3-5-F(ab')2 (T1/2α = 2.64 ± 0.37 min and T1/2β = 86.55 ± 26.86 min, respectively). In micro single-photon emission computed tomography/computed tomography (micro-SPECT/CT) imaging, the tumor was clearly displayed at 1 h after 99mTc-MAG3-5-Fab injection, while the blood background was extremely low at 3 h, and the probe was mainly excreted through the kidneys and biliary tract. 99mTc-MAG3-5-F(ab')2 uptake was also detected at the tumor site, although the blood background was consistently high. The biodistribution results were consistent with the micro-SPECT/CT imaging results. 99mTc-MAG3-5-Fab could clearly display hTREM2+ A549 tumors in a short time (1 h) with low uptake in nontumor organs and tissues and thus has clinical application prospects.
Collapse
Affiliation(s)
- Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
- Institute of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Cheng Y, Shi D, Ye R, Fu W, Ma P, Si Z, Xu Z, Li L, Lin Q, Cheng D. Noninvasive evaluation of PD-L1 expression in non-small cell lung cancer by immunoPET imaging using an acylating agent-modified antibody fragment. Eur J Nucl Med Mol Imaging 2023; 50:1585-1596. [PMID: 36759371 DOI: 10.1007/s00259-023-06130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE The aim of this study was to explore an effective 124I labeling strategy and improve the signal-to-noise ratio when evaluating the expression of PD-L1 using an 124I-iodinated durvalumab (durva) F(ab')2 fragment. METHODS The prepared durva F(ab')2 fragments were incubated with N-succinimidyl-3-(4-hydroxyphenyl) propionate (SHPP); after purification, the HPP-durva F(ab')2 was iodinated using Iodo-Gen method. After the radiochemical purity, stability, and specific activities were determined, the binding affinities of probes prepared using different labeling strategies were compared in vitro. The clinical application value of [124I]I-HPP-durva-F(ab')2 was confirmed by PET imaging. To more objectively evaluate the in vivo distribution and clearance of tracers, the pharmacokinetics and biodistribution assays were also performed. RESULTS After being modified with SHPP, the average conjugation number of SHPP per durva-F(ab')2 identified by LC-MS was about 8.92 ± 2.84. The prepared [124I]I-HPP-durva F(ab')2 was obtained with a satisfactory radiochemical purity of more than 98% and stability of more than 93% when incubated for 72 h. Compared with unmodified [124I]I-durva F(ab')2, the specific activity of [124I]I-HPP-durva-F(ab')2 was improved (52.91 ± 5.55 MBq/mg and 15.91 ± 0.74 MBq/mg), while the affinity did not significantly change. The biodistribution experiments and PET imaging showed that the prepared [124I]I-HPP-durva-F(ab')2 exhibited an accelerated clearance and improved tumor-to-background ratio compared with [124I]I-durva-F(ab')2. The specificity of [124I]I-HPP-durva-F(ab')2 to PD-L1 was well demonstrated both in vitro and in vivo. CONCLUSIONS A PD-L1 PET imaging probe [124I]I-HPP-durva F(ab')2 was successfully synthesized through the SHPP modification strategy. The prepared probe was able to accurately evaluate the PD-L1 expression level through high-contrast noninvasive imaging.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Renjie Ye
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Wenhui Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Pengcheng Ma
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Lixin Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|